
Unrelated parallel machine scheduling under 
machine availability and eligibility constraints to 
minimize the makespan of non-resumable jobs  

1. Introduction

Scheduling problems in manufacturing environ-
ments are concerned with the optimal allocation of 
resources over time to a set of tasks. Resources and 
tasks are usually called machines and jobs in these 
environments [1]. The parallel machine scheduling 
problem is one of the well-known scheduling prob-
lems where a set of jobs is to be processed exactly 
by one of the multiple machines working in parallel. 
Scheduling activity in this environment includes as-
signing jobs to the parallel machines and sequencing 
jobs on each machine [2].

Parallel machine scheduling problem is divided 
into three main categories. The first category is iden-
tical parallel machine scheduling, as each job has 
identical processing time requirements on each ma-
chine. If the processing time of a job on a machine 
depends on the machine's speed, then the problem 
is defined as uniform parallel machine scheduling. 
The general case of parallel machine scheduling is 
unrelated parallel machine scheduling, in which the 
processing time of jobs on each machine is different 
and independent [2].

Most studies in the machine scheduling literature 
assume a stable machining environment in which all 

This study considers the scheduling problem of multiple independent and non-resumable 
jobs on unrelated parallel machines subject to machine availability and eligibility constraints. 
For each machine, there is a maximum continuous working time due to an unavailable pe-
riod required for maintenance or tool changeover so that multiple unavailable periods on 
each machine may occur. The start time of an unavailable period on each machine is flexible 
and depends on the sum of the processing times of all jobs completed before this unavail-
ability period. The objective is to minimize the makespan, which is the time to complete 
the processing of all non-resumable jobs. We develop a mixed integer linear programming 
(MILP) model to solve the problem optimally and a heuristic algorithm to solve the problem 
instances for which the MILP model cannot achieve an optimal solution in a reasonable 
allowed solution time. Computational experiments are done to evaluate our solution ap-
proaches’ performance in terms of quality and time. The results show that using a mixed inte-
ger linear programming model is not a practical alternative, especially for large-sized problem 
instances. However, the proposed heuristic algorithm finds near-optimal solutions in a very 
short time. 

Article history:

Received February 20, 2023 
Revised November 8, 2023
Accepted January 10, 2024
Published online January 19, 2024

Keywords:
Scheduling; 
Unrelated parallel machines; 
Machine availability and eligibility 
constraints; 
Non-resumable jobs; 
Makespan; 
Mixed integer linear programming

*Corresponding author:
Ferda Can Çetinkaya
cetinkaya@cankaya.edu.tr

ISSN 2683-345X

http://doi.org/10.24867/IJIEM-2024-1-345Published by the University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia. 
This is an open access article distributed under the CC BY 4.0 terms and conditions.

A B S T R A C T A R T I C L E  I N F O

International Journal of Industrial 
Engineering and Management

Volume 15 / No 1 / March 2024 / 18 - 33

Original research article

journal homepage: http://ijiemjournal.uns.ac.rs/

A. Kurta, F. C. Çetinkayab,*

a Alanya Alladdin Keykubat University, Industrial Engineering Department, Antalya, Turkey; 
b Çankaya University, Industrial Engineering Department, Ankara, Turkey



19Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

machines are continuously available for processing 
jobs throughout the scheduling period. However, this 
assumption may only be realistic in some industrial 
environments since machines may not be available 
during specific periods. Machine unavailability may 
occur due to preventive maintenance, tool change-
overs, material shortages, and machine breakdowns 
[3]–[6].

There are many industrial applications in which 
the machine availability constraint is observed [7]. 
An example is the scheduling of computer numerical 
control (CNC) machines. CNC machines cannot be 
continuously available due to tool wear. They have a 
maximum continuous working time, limited by the 
known and constant tool wear time. Thus, their tools 
need to be changed within a pre-determined time. 
Machines cannot process jobs during the known and 
constant tool change times [6], [8]. Another example 
is the case when the machines are unavailable due 
to preventive maintenance periods [9]. Preventive 
maintenance activities (such as lubrication, clean-
ing, and adjusting) reduce the machine breakdowns 
and improve the machine’s life. Therefore, this leads 
to the reduction of rework and scrap rate. Conse-
quently, preventive maintenance is a practical activity 
to prevent the high cost of corrective maintenance, 
which should be done after machine breakdowns [4], 
[10]-[12].

Two job characteristics, resumable and non-re-
sumable, are extensively studied in the literature on 
scheduling problems with machine availability [3], [5]. 
In the case of the resumable job, when the process-
ing of a job cannot be finished before the machine’s 
unavailability period, its processing can be continued 
after the same machine becomes available again. That 
is, job processing is allowed to be interrupted, and the 
interrupted job must continue to be processed on the 
machine it is interrupted [13]. In the non-resumable 
jobs case, job processing must start and finish in the 
machine’s available period (maximum working time). 
In the literature, the terms preempt-resume and pre-
empt-repeat have also been used for resumable and 
non-resumable, respectively [2].

A well-known assumption in the parallel machine 
scheduling literature is that machines can process 
each job. However, this assumption must be re-
vised for some manufacturing environments like the 
semiconductor industry [13]. Any machine may not 
process jobs due to the capabilities of machines. So-
phistication and technological capabilities affect the 
processing of jobs so that jobs may have specific ma-
chine sets to be processed. This situation is known 
as the machine eligibility restriction in the schedul-

ing literature [14]. The parallel machine scheduling 
problem with eligibility restriction is a particular case 
of the traditional parallel machine scheduling prob-
lem in which the processing time of a job is set to 
a sufficiently large positive number if this job is not 
eligible to be processed by a machine.

The traditional identical parallel machine sched-
uling problem to minimize the makespan, which is 
the time to complete the processing of all jobs, in-
volves only one decision. This decision is the assign-
ment of jobs to the machines [1], [2]. If the machine 
availability constraint is considered, then the problem 
must involve two decisions: the assignment of jobs to 
the machines and the scheduling of jobs during the 
availability periods on their assigned machines [3], 
[5]. Furthermore, if we consider the machine eligibil-
ity constraint, the number of machines that can be 
used to process each job will reduce. Thus, the solu-
tion space will decrease. On the other hand, when 
the processing time of jobs on each machine is dif-
ferent and independent (i.e., unrelated parallel ma-
chine scheduling environment), the selection of the 
machine to process each job will be critical due to 
different processing times on machines [15].

In this study, we address the problem of schedul-
ing non-resumable jobs to minimize the makespan 
on unrelated parallel machines with machine avail-
ability and eligibility constraints simultaneously. It is 
desired to find a schedule allocating the jobs to the 
machines, assigning the jobs to availability batches 
(periods) on each machine, and determining the 
start times of unavailable periods on the machines. 
The contribution of our study is threefold. First, to 
our knowledge, in the literature, the study by San-
toro and Junqueira [16] is the only one that considers 
the unrelated parallel machine scheduling problem 
with machine availability and eligibility constraints si-
multaneously. Thus, our study is the second attempt 
for unrelated parallel machine scheduling with non-
resumable jobs and machine availability and eligibil-
ity constraints simultaneously. In contrast, unavail-
ability periods in our study have fixed duration, and 
the resulting schedule determines the start times of 
the unavailability periods. Secondly, a mixed integer 
programming model has been developed to solve the 
problem under study optimally, especially for small 
and medium-sized problem instances. Thirdly, the 
proposed heuristic algorithm in our study is easy to 
implement for solving large-sized problems with a 
sound quality solution rather than using exact solu-
tion approaches with more computational effort.

The rest of this paper is organized as follows. In 
Section 2, we give a related review of the literature 



20 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

on the unrelated parallel machine scheduling prob-
lems considering machine availability and eligibility 
constraints and minimizing the makespan. Section 3 
briefly defines the problem under study and provides 
some properties of the optimal solution to the prob-
lem. In Section 4, we propose a mixed integer linear 
programming (MILP) model to solve the problem 
optimally. Section 5 describes our proposed heuristic 
algorithm, which can solve large-sized problems when 
the MILP cannot provide solutions. The computa-
tional tests to evaluate the performance of the pro-
posed MILP model and the heuristic algorithm are 
presented in Section 6. Conclusions and several di-
rections for future research are discussed in Section 7.

2. Literature review

The problem studied in this paper falls at the in-
tersection of parallel machine scheduling problems 
with machine availability and eligibility constraints. 
Thus, in this section, we provide a brief overview of 
these studies to position our study in the related lit-
erature properly. Here, we limit our literature review 
to the studies considering the makespan as the sched-
uling performance (criterion). 

For the last two decades, many researchers have 
studied the parallel machine scheduling problem by 
independently considering machine availability and 
eligibility constraints. In the literature, many stud-
ies only investigate the parallel machine scheduling 
problem with a machine availability constraint. The 
reader may refer to the paper by Ma et al. [7] for a 
comprehensive review of the literature on schedul-
ing with a machine availability constraint and other 
scheduling performance measures and machining 
environments such as single-machine, flow shops, 
and job shops. 

Most scheduling studies with an availability con-
straint in the literature consider makespan as the 
scheduling criterion since it focuses on improving re-
source utilization and productivity and reducing the 
energy consumption [17]. Table 1 provides a brief 
overview of the closely related studies dealing with 
makespan minimization on parallel machines with an 
availability constraint. All these studies assume that 
the start time of each unavailable period is known 
in advance. Table 1 shows that the studies concern-
ing unrelated parallel machines are limited [18]-[21]. 
Our study differs from theirs since we assume that 
jobs have specific machine sets to be processed (i.e., 
machine eligibility constraint is considered), and the 
start time of each unavailability period is flexible 

since the time between two consecutive periods of 
unavailability should be less than or equal to a pre-
determined time (maximum continuous working 
time). Moreover, our problem environment under 
study is an extension of the single-machine environ-
ment, in which the two assumptions above exist, de-
scribed in [6], [8], to the unrelated parallel machine 
environment.

On the other hand, a few studies only consider 
the unrelated parallel machine scheduling problem 
with machine eligibility constraint. Table 2 provides 
a brief overview of the related studies dealing with 
makespan minimization on parallel machines with 
eligibility constraint. As seen in Table 2, the study 
by Afzalirad and Rezaeinan [47] is the only one that 
investigates the unrelated parallel machine sched-
uling problem with machine eligibility constraint. 
However, the most recent study in the literature is by 
Maeckar et al. [48]. They investigated the unrelated 
parallel machine scheduling problem, considering 
machine eligibility constraints and delivery times to 
minimize the total weighted tardiness of jobs. They 
proposed a mathematical model and various heu-
ristics to address the problem. For a comprehensive 
review of the literature on scheduling problems with 
machine eligibility constraints and other scheduling 
performance measures and machining environments 
such as single-machine, flow shops, and job shops, 
the reader may refer to [49], [50].

Although there are numerous studies considering 
machine availability and eligibility constraints indepen-
dently, only a few studies consider these constraints 
simultaneously for parallel machine scheduling prob-
lems. For instance, Sheen et al. [51] delved into the 
problem of minimizing the maximum lateness. They 
developed a Branch and Bound algorithm, which can 
solve up to 50 jobs and seven machines in a reason-
able timeframe. Moreover, Cunha et al. [52] consid-
ered a related study to minimize a weighted function 
that includes tardiness and idleness. Their proposed 
solution is based on an Iterated Local Search (ILS) 
algorithm, which they applied to a ship scheduling 
problem within the oil industry domain.

A study closely related to ours has been con-
ducted by Santoro and Junqueira [16]. In their work, 
they address the challenge of considering machine 
availability and eligibility constraints simultaneously 
in the context of unrelated parallel machines to mini-
mize the makespan. Their contribution includes the 
development of a mathematical model applicable 
to non-resumable and resumable cases. It is worth 
noting that in their study, the unavailability periods 
are predetermined, fixed, and changing in duration. 



21Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

In contrast, unavailability periods in our study have 
fixed duration, and the resulting schedule determines 
the start times of the unavailability periods.

3. Problem definition

In this section, we first briefly define the problem 
under study and its assumptions, next give its com-
plexity and finally provide a property of the optimal 
schedule for the problem. The followings are the as-

sumptions for the scheduling problem under study:

(1) There are n jobs and m unrelated parallel 
machines ready for processing at time zero. 

(2) Each job has one operation that can only 
be processed on a set of eligible machines 
among m unrelated parallel machines. That 
is, machine eligibility constraint exists.

(3) Each machine cannot process more than one 
job at a time. That is, machines are not batch-
processing machines.

Reference
Type of 
parallel 
machines

Number of 
machines 
having 
unavailable 
periods

Number of 
unavailable 
periods 
on the 
machines

Length of 
the available 
periods

Solution approach

Chang and Hwang [22] Pm < m Single Unequal Worst Case Analysis of MULTIFIT rule

Lee [3] Pm < m Single Unequal Heuristic based on LPT rule

Hwang and Chang [4] Pm m Single Unequal Worst Case Analysis of LPT rule

Gharbi and Haouari [23] Pm m Single Unequal Branch and Bound Algorithm

Hwang et al. [24] Pm m Single Unequal Worst Case Analysis of LPT and 
MLPT rules

Lee and Wu [25] Pm m Single Unequal Heuristic based on LDR and 
MULTIFIT rules

Grigoriu and Friesen [26] Pm m Single Unequal Heuristic based on LPT rule

Masmoudi and Benbrahim [27] Pm m Single Unequal Heuristic Algorithms (Dividing to 5 
Cases)

Pries and Sikora [28] Pm m Single Unequal Benders Decomposition

He et al. [29] Pm m Multiple Unequal Heuristic based on LPT rule

Beaton et al. [30] Pm m Multiple Unequal Mathematical model and several 
heuristic algorithms

Xu and Yang [31] Pm m-1 Multiple Equal Average Case Analysis

Xu et al. [32] Pm m Multiple Equal Worst Case Analysis of BFD-LPT rule

Xu et al. [33] Pm m Multiple Equal Heuristic based on BFD-LPT rule

Li et al. [34] Pm m Multiple Equal Two mathematical models and 
heuristic algorithms

Chen et al. [35] Pm m Multiple Equal Mathematical models and three 
heuristic algorithms

Yong [36] Qm m Single Unequal Worst Case Analysis of LPT rule

Kaabi [37] Qm m Multiple Unequal A mathematical model and heuristic 
algorithm

Kaid et al. [18] Rm m Single Unequal Tabu Search and Simulated Annealing

Suresh and Chaudhuri [19] Rm m Multiple Unequal Heuristic based on Neighborhood 
Search

Lei and He [20] Rm m Multiple Unequal Adaptive Artificial Bee Colony

Rosales et al. [21] Rm m Multiple Equal Metaheuristic based on multi-start 
strategy

Pm: m dentical parallel machines; Qm: m uniform parallel machines; Rm: m unrelated parallel machines;  
LPT: Longest processing time; MLPT: Modified longest processing time; LPTX: Longest processing time based; 
LS: List scheduling; MULTIFIT: Multiple-Fit; BFD: Best fit decreasing; LDR: Largest deterioration rate; 
HLF: Highest Level First

Table 1. Parallel machine scheduling studies with availability constraint to minimize the makespan



22 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

(4) The processing time of each job on each eli-
gible machine is known.

(5) Job processing cannot be interrupted. That 
is, jobs are non-resumable. 

(6) Machines are not continuously available due 
to the unavailable periods. That is, machine 
availability constraint exists.

(7) Durations of the unavailable (down) time TU 
and the maximum continuous working time 
TW between two consecutive unavailable pe-
riods are known. 

(8) The maximum continuous working time is 
greater than or equal to the processing time 
of every job this machine can process. Other-
wise, no feasible solution is achieved. 

(9) Unavailable periods of the machines may 
overlap.

Based on the assumptions given above, the prob-
lem we deal with in this study can be stated as fol-
lows. There is a set of independent jobs with a single 
operation to be processed by one of the unrelated 
parallel machines subject to machine availability and 
eligibility constraints. It is desired to find a schedule 
allocating the jobs to the machines, assigning the jobs 
to availability batches (periods) on each machine, and 
determining the start times of unavailable periods on 
the machines to minimize the time to complete all 
jobs (makespan).

The following propositions give the complexity 
of the problem under study and its optimal solution 
property, respectively.

Proposition 1. The problem under study is NP-hard 
in the strong sense.
Proof: When machine availability and eligibility re-
strictions are omitted, we observe that the problem 
reduces to the scheduling of n jobs on m unrelated 
parallel machines to minimize the makespan, which 
is shown to be strongly NP-hard by Lenstra et al. 
[15]. Thus, our problem is also NP-hard in the strong 
sense.

Proposition 2. For the problem under study, an op-
timal schedule exists such that the machine deter-
mining the optimal makespan does not have any idle 
time. 
Proof: If an idle time exists on the machine deter-
mining the makespan of a schedule, subsequent jobs 
or unavailable periods may be moved earlier without 
increasing the makespan of the current schedule.

Suppose jobs processed between two consecutive 
unavailable periods on a machine are considered a 
batch (group). In that case, a schedule on a machine 
can be viewed as a series of batches of jobs separated 
by unavailable periods on that machine. Figure 1 il-
lustrates a feasible schedule of eleven non-resumable 
jobs on two consecutive machines. As it is illustrated 

Reference
Type of 
parallel 
machines

Additional Problem 
Characteristics Solution approach

Vairaktarakisi and Cai [38] Pm
Lower bounds, heuristic algorithm, and branch-and-
bound procedure

Lin and Li [39] Pm Unit length Binary search algorithm

Glass and Kellerer [40] Pm Matching based polynomial time ε-approximation

Liao and Sheen [41] Pm Machine availability Binary search algorithm

Ou et al. [42] Pm Heuristic algorithm

Hu et al. [43] Pm Precedence constraints
Heuristic algorithm combined of the largest total amount 
of processing first rule and the enhanced smallest 
machine load first rule

Huo and Leung [44] Pm Heuristic algorithm 

Li and Wang [45] Pm Job release time Heuristic algorithm and polynomial time approximation 
scheme

Edis and Ozkarahan [46] Pm Resource-constrained Combined Integer Programming/Constraint Programming

Afzalirad and Rezaeian [47] Rm

Resource constraints, 
sequence-dependent setup 
times, different release 
dates, and precedence 
constraints

Genetic algorithm and artificial immune system

Table 2. Parallel machine scheduling studies with eligibility constraint to minimize the makespan



23Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

in Figure 1, the batch lengths should be less than the 
maximum continuous working time TW. They may 
vary since the sum of the processing times of jobs 
in different batches may be different since the sum 
of the job processing times in batches may not be 
equal. Thus, the batch length of a set of jobs on a ma-
chine shows the portion of the maximum continuous 
working time used. The number of batches gives the 
number of unavailable periods due to maintenance 
activities. Note that the last unavailable periods on 
the machines are not illustrated in Figure 1 since they 
do not affect the time to complete all jobs.

4. The proposed MILP model

Based on the assumptions, propositions, and defi-
nitions in Section 3, we now develop a mixed inte-
ger linear programming (MILP) model to solve the 
problem optimally. The decision here is to allocate 
the jobs to the batches on the machines so that an op-
timal schedule minimizing the makespan of all jobs 
is obtained. The following indices, sets, parameters, 
and decision variables are used in this model.

Indices and sets:
j   Index for jobs, j = 1,2, …, n
k   Index for machines, k = 1,2, …, m
Mj   Set of eligible machines for job j
Jk   Set of jobs that can be processed by machine k
t   Index for batches, t = 1,2, …, |Jk| where |Jk| 
   is the number of jobs that can be processed 
   by machine k

Parameters:
TU    Duration of an unavailable (down) period
TW   Maximum continuous working time between 
   two consecutive unavailable periods
Pjk   Processing time of job j on machine k where 
   Pjk is set to a sufficiently large positive 
   number if job j is not eligible to be processed 
   by machine k

Decision variables:
Xjkt   1, if job j is assigned to batch t on machine k; 
   0, otherwise
Ykt   1, if batch t is used on machine k; 
   0, otherwise
Cmax  Makespan

MILP model for the problem under study can be 
formulated as follows:

Minimize                                                       (1)

Subject to    (2)

(3)

(4)

(5)

In the above MILP model, the objective in (1) is 
to minimize the makespan. Constraint set (2) ensures 
that each job is assigned to one batch of a machine 
in the job’s eligible set. Constraint set (3) guarantees 
that the sum of the processing times of jobs in each 
batch of every machine cannot exceed the maximum 
continuous working time. The maximum completion 
time (makespan) of the jobs is given by the constraint 
set (4). Constraint sets (5) impose binary restrictions 
on the decision variables.

In order to strengthen the model, we introduce the 
lower and upper bounds on the makespan. A simple 
lower bound for the Cmax value is found by assuming 
that each job is assigned to its minimum processing 
time machine and that the total work is equally allo-
cated among these machines. Then we have

Figure 1. A feasible schedule of non-resumable jobs on two consecutive machines

(6)



24 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

where ⌊x⌋ is the largest integer smaller than or 
equal to x.

Instead of assuming an initial upper bound on the 
makespan as infinity, the makespan value obtained 
from the initial phase of the proposed heuristic algo-
rithm discussed in Section 6 can be used as an upper 
bound UB . i.e., 

(7)

where  and  are the makespans of the 
Initial Schedules 1 and 2, respectively, obtained in 
the first phase of the proposed algorithm. Thus, we 
add the following constraints to the mathematical 
model:

(8)

(9)

5. The proposed heuristic algorithm

As discussed in Section 6, the size of the MILP 
model increases drastically with an increase in the 
number of jobs. Therefore, the optimal solution to 
large-sized problem instances may not be obtained 
within reasonable computational times. Moreover, 
the existence of a polynomial-time algorithm to solve 
the problem optimally is unlikely. These facts mo-
tivated us to develop a fast algorithm that provides 
optimal or near-optimal solutions quickly.

The algorithm proposed in this section is a local 
search algorithm with four phases. In the algorithm's 
first phase (namely, finding an initial schedule), initial 
feasible schedules are generated. In the second phase 
(namely, improvement by shifting jobs to other ma-
chines), the initial feasible schedules are improved 
by shifting jobs from their current machines to each 
other. In the third phase (improvement by swapping 
(pairwise interchanging) jobs between machines), the 
jobs on different machines in the resulting sched-
ule obtained by the second phase are pairwise in-
terchanged to further improve the current solution. 
Finally, in the fourth phase (namely, building a new 
schedule by perturbing the current one), the sched-
ule found in the third phase is improved by making 
a machine in the set of eligible machines for a job 
ineligible to process this job. The algorithm is run 
for two initial schedules, and the best of the resulting 
schedules is selected. 

In the heuristic algorithm, we solve the bin-pack-
ing problems for assigning jobs to the batches of a 
machine, where each batch has a total processing ca-

pacity limited by the maximum continuous working 
time TW. For solving the bin-packing problems, we 
use the heuristic algorithm SAWMBS proposed by 
Fleszar and Charalambous [53] since it is one of the 
best heuristic algorithms for solving the bin-packing 
problem. Because of page limitation, we do not pro-
vide this bin-packing algorithm. We refer the inter-
ested reader to [53].

5.1. Phase 1: Finding an initial schedule

Using the property of the optimal schedule given 
in Proposition 2, we generate two initial schedules for 
the non-resumable jobs case. If one of these sched-
ules has a makespan value equal to the lower bound 
LB in equation (6), then this initial schedule is op-
timal. Otherwise, we continue with the remaining 
phases described in Sections 5.2 through 5.4 for each 
initial schedule and select the better of two schedules 
as the proposed schedule by the algorithm.

Initial Schedule 1
The stepwise description of the procedure that 

determines the Initial Schedule 1 is as follows:
Step 1. (i) Repeat this step for each job j in set J. If 

job j has only one eligible machine, assign 
job j to the eligible machine and calcu-
late the workload of the eligible machine 
when job j is assigned to that machine; 
otherwise, assign job j to unassigned jobs 
set U. 

        (ii) Repeat this step for each job j in set U. 
Find the machine(s) having the minimum 
processing time for job j. If only one eli-
gible machine has the minimum process-
ing time for job j, assign job j to this ma-
chine, and calculate the workload of the 
eligible machine when job j is assigned to 
that machine. Otherwise (i.e., there are 
more than one eligible machine having 
the same minimum processing time for 
job j), 

a.  select the machine having the mini-
mum work load among the set of 
eligible machines with the same 
minimum processing time for job j,

b.  assign job j to the selected machine, 
and 

c.  calculate the workload of the ma-
chine for which job j is assigned.

Step 2. For each machine, apply the bin-packing 
heuristic algorithm SAWMBS to find an ini-
tial schedule of all jobs assigned and calculate 



25Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

the associated completion time on this ma-
chine as  where 
Bk  is the number of batches on machine k 
determined by the bin-packing heuristic algo-
rithm SAWMBS. According to Proposition 
1, we did not consider the idle times on ma-
chines.

Step 3. Calculate the makespan of the initial sched-
ule of all jobs by selecting the maximum 
completion time among all machines as 

.

Initial Schedule 2
We only present the first step of the procedure 

that determines the Initial Schedule 2 since the last 
two steps of the procedures that determine the Initial 
Schedules 1 and 2 are identical.
Step 1. Repeat this step for each job j in set J. Find 

the machine(s) having the minimum process-
ing time for job j. If only one eligible machine 
has the minimum processing time for job j, 
assign job j to this machine. Otherwise (i.e., 
there is more than one eligible machine with 
the same minimum processing time for job 
j), select the machine with the minimum in-
dex, and assign job j to the selected machine.

5.2. Phase 2: Improvement by shifting jobs to 
other machines

In this phase, the initial feasible schedule generat-
ed in Phase 1 is improved by shifting jobs from their 
current machines to other machines in their eligible 
sets. Below is the stepwise description of Phase 2:
Step 1. Rank the machines in nonincreasing order of 

their completion times Ck.
Step 2. Select a machine k according to this order. 

(i) Arrange the jobs assigned to machine k 
in nonincreasing order of their process-
ing times Pjk. Call this sequence LPT.

(ii) Select a job j from the LPT sequence. If 
there is only one machine in the set of 
eligible machines for job j, then consid-
er a different job in the LPT sequence; 
otherwise, consider each machine k' (k' 
∈ Mj  and k'  ≠ k) that is eligible to pro-
cess job j. Temporarily assign job j to 
each machine k' if the condition Ck' + Pjk' 
< Ck  is satisfied, and go to Step 2(iii). If 
the condition Ck' + Pjk' < Ck  is not sat-
isfied for every machine k', then go to 
Step 2(ii) to select a different job from 
the sequence.

(iii) If the jobs are non-resumable, apply 
the bin-packing heuristic algorithm 
SAWMBS for every machine k' on 
which job j is temporarily assigned; oth-
erwise, go to Step (iv).

(iv) Calculate the associated temporary 
completion time on machine k' as 

.
(v) Among the machines on which job j is 

temporarily assigned, determine ma-
chine s having the shortest completion 
time.

(vi) If the completion time of machine s is 
less than the completion time of ma-
chine k, keep the schedule in which job  
j is temporarily shifted to machine s and 
go to Step 1; otherwise, do not shift job j 
and go to Step 2(ii) to select another job.

Step 3. If all jobs in the LPT sequence of machine 
k are considered, then go to Step 2 to select 
another machine. Repeat until all machines 
are considered.

5.3. Phase 3: Improvement by swapping 
(pairwise interchanging) jobs between 
machines

This phase takes the schedule obtained in Phase 
2 and aims to improve it by swapping jobs between 
machines. The steps of Phase 3 are as follows:
Step 1. Rank the machines in nonincreasing order of 

their completion times Ck.
Step 2. Select two machines, f and l, where f and l 

are the first and the last machines of the list 
found in Step 1, respectively. 
(i) Arrange the jobs assigned to machine f 

in nonincreasing order of their process-
ing times on this machine. Call this se-
quence LPT(1).

(ii) Arrange the jobs assigned to machine l 
in nonincreasing order of their process-
ing times on this machine. Call this se-
quence LPT(2).

Step 3. Starting from the beginning of the LPT(1) se-
quence, select one job, i. Similarly, starting 
from the beginning of the LPT(2) sequence, 
select another job, j. 
(i) If both machines f and l are eligible to 

process jobs i and j and condition

 is satisfied, then temporarily exchange 
the jobs and go to Step 3(ii); otherwise, 



26 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

go to Step 3 to select another pair of 
jobs.

(ii) Apply the bin-packing heuristic algo-
rithm SAWMBS for machines f and l 
and calculate the temporary completion 
times on machines f and l.

(iii) Determine the temporary makespan of 
the schedule of all jobs by calculating the 
makespan as .

(iv) If the temporary makespan is greater 
than the completion time of machine f, 
do not exchange the jobs i and j, and go 
to Step 3 until all job pairs are consid-
ered for swapping. Otherwise, do not ex-
change the jobs, and go to Step 2 until all 
remaining machine pairs are considered.

5.4. Phase 4: Building a new solution by 
perturbing the current solution machines

The last phase of the heuristic algorithm aims to 
improve the schedule found in Phase 3 by making 
a machine in the set of eligible machines for a job 
ineligible to process this job. This approach is known 
as perturbing a solution. The steps of Phase 4 are as 
follows:
Step 1. If an improved solution is obtained, consider 

this improved schedule and go to Step 2; oth-
erwise, convert the set of eligible machines 
for the selected job determined in Step 2 to 
its original set, and repeat this step for all re-
maining jobs.

Step 2. Select a job with the longest processing time 
from the most loaded machine.

Step 3. Make the machine on which the selected job 
is already assigned, ineligible to process the 
selected job (i.e., the machine is not in the set 
of eligible machines for the selected job), and 
go to Phase 1.

6. Computational experiments

In this section, we describe our computational 
tests to evaluate the effectiveness and efficiency of the 
MILP model and the proposed heuristic algorithm 
in finding the optimal schedules. We also compare 
the proposed algorithm with the mathematical mod-
el. The mathematical model is solved by the optimi-
zation software package GAMS (General Algebraic 
Modeling System), and the proposed heuristic algo-
rithm is coded in Microsoft Visual C++. 

6.1. Parameter setting and problem instances 
generation

The values of the parameters used in our experi-
ments are generated as follows:

(1) Machine eligibility sets: To set the machines 
eligible to process jobs, we adopt a similar 
method followed by Alagoz and Azizoglu 
[54]. For each machine and job combina-
tion, we generate a random number between 
0 and 1. If this number is greater than 0.3, 
then the machine is assumed to be eligible 
to process the job and added to the eligibil-
ity set of this job. If no machine is eligible 
for this job, we generate another random 
number between 0 and 1 until an eligible 
machine is found. 

(2) Processing times: They are generated from 
discrete uniform distributions U[1, a], where 
a=10, 50. If a machine is not eligible for a 
job, then the processing time of this job is set 
to a sufficiently large positive number.

(3) Number of jobs and machines: The num-
bers of machines are taken as 2, 3, 5, 10, and 
20, whereas the numbers of jobs are taken 
as 10, 20, 50, 100, and 200 by preserving the 
requirement that the number of jobs should 
be greater than the number of machines in a 
problem instance. 

(4) Availability and unavailability times: Maxi-
mum continuous working time TW is set to 
a, 2a, and 3a, whereas the duration of the 
unavailable period TU is set to 0.2TW, 0.5TW, 
and 1.0TW. We run our problem instances 
according to the combination of these maxi-
mum continuous working and unavailability 
times.

For each possible combination of the above 
parameters, ten problem instances are generated. 
Hence, a total of 3,420 problems are tested in our 
computational study.

6.2. Performance measures

The software package GAMS gives three types of 
solutions for the MILP models. One of the solutions 
is the optimal solution, which is the desired one; the 
other is the best integer solution, in which the solution 
is integer but not optimal. The third type of solution 
is the one in which no integer solution is achieved, 
but we have the LP-relaxation solution, which is the 
best lower bound on the optimal makespan value. 



27Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

If the LP-relaxation solution equals the best integer 
solution, we conclude that the MILP model achieves 
the optimal solution. For the problem instances with 
no optimal integer solution, we compare the makes-
pan value obtained by our heuristic algorithm with 
the makespan value of the LP-relaxation solution. In 
our experiments, we limit the runtime to 10,800 sec-
onds for solving each problem instance by GAMS 
using its solver CPLEX.

The percent deviation (gap) between the best 
integer solution and the LP-relaxation solution ob-
tained by the MILP model is calculated to measure 
the effectiveness of the MILP model. The percent 
gap is , where 

  and  are the makespan values of the 
best integer and the LP-relaxation solutions, re-
spectively. Similarly, the percent deviation of the 
solution obtained by the heuristic algorithm from 
the best possible solution (LP relaxation solu-
tion) obtained by the MILP model is calculated as 

, where  
is the makespan value of the solution obtained by 
the heuristic algorithm. Note that , and 

 at the optimal solution.
We also report the number of optimum solutions 

obtained for problem instances in which . 
For some problem instances, an integer solution can-
not be found by solving the MILP model. In order 
to find the number of unsolved problem instances by 
the MILP model, we use the number of the LP relax-
ation solutions obtained only. 

The efficiency measure of the proposed MILP 
model and the heuristic algorithm is the computa-
tional time required to solve the problem.

6.3. Discussion of the results

This section discusses the performance of so-
lution approaches, the performance of the initial 
schedules generated in the first phase of the heuristic 
algorithm, and the effects of the phases in the heuris-
tic algorithm.

Performance of the solution approaches

We now discuss the performance of our solution 
approaches by using both solution quality and CPU 
time. We first investigate the effects of the number of 
machines m and the number of jobs n on the perfor-
mance of solution approaches when the maximum 
working time TW and the duration of unavailable pe-
riod TU are fixed. As it is discussed in Section 6.1, 
there are eighteen TW and TU combinations. The re-

sults of our computational experiments reveal that 
the change in the number of machines and the num-
ber of jobs show nearly the same characteristics on 
the solution approaches' performance for each of the 
eighteen TW and TU combinations. Due to the page 
limitation, we only discuss the effects of change in the 
number of machines and jobs for problem instances 
with pj~U[1, 50] when the TW is 50 and TU is 10. 

In Table 3, the number of optimum solutions ob-
tained by each solution approach is reported. The 
number of jobs significantly affects the number of op-
timum solutions obtained. The number of problem 
instances solved optimally decreases as the number 
of jobs increases. In the MILP, it is because the to-
tal number of constraints and variables increases as 
the number of jobs increases. Table 2 also illustrates 
the number of problem instances with the best in-
teger solutions obtained by the MILP. Although we 
have yet to get any information about the optimal-
ity of these solutions, these integer solutions might 
be either optimum or not. MILP could not find any 
integer solution in some problem instances, such as 
when m is two and n is 200. The number of optimum 
solutions obtained for this set of 10 problem instanc-
es is zero, the number of best integer solutions is 4, 
and the number of non-integer solutions is 6.

Percent deviations of the solution approaches are 
also illustrated in Table 3. The percent deviation for 
each solution approach is zero when the number of 
jobs is small (i.e., when n is 10 or 20). For each so-
lution approach, the percent deviations increase as 
the number of jobs increases. The performance of 
each solution approach also decreases as the number 
of machines increases. From these observations, we 
conclude that the performance of both MILP and 
the heuristic algorithm decreases as the problem size 
increases.

As seen from Table 3, the number of jobs signifi-
cantly affects the maximum and average CPU times 
for the solution approaches. The CPU time of each 
solution approach increases rapidly as the number of 
jobs increases. The same table shows that the CPU 
time of the best integer solution obtained by the 
MILP approach is approximately equal to the aver-
age CPU time of small-sized problem instances. It is 
significantly smaller than the CPU time of the large-
sized problem instances. In the MILP approach, 
some problem instances cannot be solved optimally 
within the limit of 10,800 seconds. The CPU time 
of the MILP does not show any systematic behavior 
when the number of machines increases. However, 
the number of machines has a little increasing effect 
on the CPU time of the heuristic algorithm.



28 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

We also investigate the effects of changing the 
maximum working time TW and the unavailability 
time TU of the machines on the performance of so-
lution approaches. Table 4 is formed by considering 
the last two rows of Table 3 and all other seventeen 
tables for the remaining TW and TU combinations. 
As seen from Table 4, the number of problem in-
stances solved optimally by the solution approaches 
increases as the value of TW increases since the num-
ber of working batches is small in long maximum 
working times. However, TU values do not affect the 
number of problem instances solved optimally by 
the solution approaches. The number of optimum 
solutions obtained in the problem instances with 
pj~U[1, 10] is higher than in the problem instances 
with pj~U[1, 50]. This situation is because the range 
of solution space to be searched for an integer so-
lution is relatively large for problem instances with 
pj~U[1, 50]. TW value also significantly affects the to-
tal number of integer solutions. It is seen that when 

TW is 50 and TU is 10, the number of integer solu-
tions obtained is 179 (i.e., 86+93=179) out of 190 
problem instances. This means the MILP could not 
find any integer solution in 11 problem instances 
out of 190. On the contrary, the number of prob-
lem instances without an integer solution becomes 
zero when TW is 150 and TU is 30. If TW is high and 
the range of processing times is less, an integer solu-
tion can be found easily by the MILP. 

In Table 4, we also report the effects of maxi-
mum working time TW and unavailability time 
TU values on the performance of the solution ap-
proaches. The CPU time of the MILP solution 
decreases as TW increases. This situation is because 
the number of working batches decreases when TW 
increases. However, increasing the TU value increas-
es the CPU time of the MILP solution. The same 
observations can be seen in the average CPU time 
for the best integer solution. Another observation 
is that the CPU time of the MILP solution in the 

m n

MILP Model Heuristic Algorithm

NOS NBIS NNS Ave. PD Max. PD Ave. CPU 
time

Max. CPU 
time

Average 
CPU 

time for 
BIS

NOS Ave. 
PD Max. PD

Ave. 
CPU 
time

Max. 
CPU 
time

2

10 10 0 0 0.00 0.00 1.59 1.75 1.59 10 0.00 0.00 0.00 0.00

20 10 0 0 0.00 0.00 1.75 2.61 1.75 10 0.00 0.00 0.00 0.02

50 2 8 0 0.95 2.26 8641.94 10800.00 18.38 2 0.95 2.26 0.07 0.11

100 0 8 2 1.32 2.37 10800.00 10800.00 255.83 0 0.72 1.20 0.81 1.19

200 0 4 6 1.28 1.82 10800.00 10800.00 2017.60 0 0.38 0.67 6.63 13.47

3

10 10 0 0 0.00 0.00 1.09 1.36 1.09 10 0.00 0.00 0.00 0.00

20 10 0 0 0.00 0.00 1.75 4.72 1.75 9 0.19 1.89 0.01 0.02

50 4 6 0 1.45 3.82 7411.40 10800.00 66.84 3 1.54 3.44 0.12 0.23

100 0 8 2 1.85 5.19 10800.00 10800.00 1676.73 0 0.97 1.82 0.69 1.00

200 0 9 1 1.47 2.44 10800.00 10800.00 870.16 0 0.50 1.02 4.38 7.42

5

20 10 0 0 0.00 0.00 3.22 8.45 3.22 9 0.31 3.08 0.02 0.03

50 10 0 0 0.00 0.00 618.21 3657.55 429.59 5 0.47 1.95 0.13 0.20

100 0 10 0 3.39 7.91 10800.00 10800.00 1467.95 0 2.75 5.59 1.15 1.97

200 0 10 0 1.91 3.94 10800.00 10800.00 1353.87 0 1.43 2.24 6.72 8.27

10

50 10 0 0 0.00 0.00 574.62 5398.69 63.94 6 1.29 5.00 0.21 0.27

100 0 10 0 6.02 11.04 10800.00 10800.00 947.85 0 6.15 11.04 1.60 2.13

200 0 10 0 6.35 9.82 10800.00 10800.00 666.50 0 5.11 8.77 15.22 19.53

20
100 10 0 0 0.00 0.00 561.55 3438.72 337.49 4 3.41 8.70 4.48 5.78

200 0 10 0 3.80 6.67 10800.00 10800.00 1365.05 0 5.23 7.14 29.15 37.23

Total (out of 
NPI =190) 86 93 11 68

Average 1.57 3.02 6054.35 6912.33 607.74 1.65 3.46 3.76 5.20

NPI: Number of problem instances, NOS: Number of optimally solved instances, NBIS: Number of problem instances with best integer 
solutions, NNS: Number of instances with LP-Relaxation (non-integer) solution, NNS = NPI - (NOS + NBIS)

Table 3. Performance of the solution approaches when TW = 50 and TU = 10



29Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

problem instances with pj~U[1, 50] is higher than 
in the problem instances with pj~U[1, 10]. As seen 
from Table 3, the change in TW time does not con-
sistently affect the CPU time of the heuristic algo-
rithm. On the contrary, increasing TU values has a 
slightly negative effect on the CPU of the algorithm 
in the problem instances with pj~U[1, 10], and it 
has no significant effect for the problem instances 
with pj~U[1, 50]. Thus, we conclude that the range 
of the processing times significantly affects the CPU 
time of the algorithm. However, the CPU time of 
the problem sets with pj~U[1, 10] is smaller than 
that of the problem instances with pj~U[1, 50].

Table 4 shows that TW and TU values significantly 
affect the percent deviation of both MILP and the 
heuristic algorithm. Performance of the solution 
approaches improves for both problem instances 
with pj~U[1, 10] and pj~U[1, 50] since the number 
of working batches increases as TW increases. On 
the contrary, increasing TU values reduce the per-
formance of the solution approaches by increasing 

the percent deviation since the solution space to be 
searched increases with the increase on TU.

The solution approaches provide better solu-
tions to the problem instances with a small range of 
processing times since the difference between best-
integer and LP-relaxation solutions is small and thus 
the solution space to be searched for an integer so-
lution is reduced. Moreover, the number of alterna-
tive solutions obtained increases as the range of the 
processing times decreases since the probability of 
having equal processing times for a job on different 
machines increases as the range of processing times 
decreases.

The average percent deviation of the MILP and 
the heuristic algorithm is 0.80 and 1.26, respectively. 
For the optimally solved problem instances, the per-
cent deviation of the heuristic algorithm is between 
0.50 and 1.26. Therefore, we can conclude that the 
heuristic algorithm is notably effective since it per-
forms very well in short average CPU times with 2.77 
seconds.

pj TW TU

MILP Model Heuristic Algorithm

NOS NBIS NNS Ave. PD Max. PD Ave. CPU 
time

Max. CPU 
time

Ave. CPU 
time for 
BIS

NOS Ave. PD Max. 
PD

Ave. 
CPU 
time

Max. 
CPU 
time

U
[1

, 1
0]

10

2 139 50 1 0.37 1.47 3053.71 6369.43 231.16 122 0.95 4.45 1.42 2.89

5 143 46 1 0.47 2.15 2929.65 6420.99 188.49 121 1.24 6.89 1.77 4.27

10 147 42 1 0.50 2.76 2633.63 5826.84 269.14 130 1.52 10.49 2.41 7.61

20

4 176 14 0 0.06 0.40 830.41 3475.87 13.26 142 0.84 3.41 1.46 2.87

10 176 14 0 0.14 1.10 825.09 2922.91 14.36 143 0.88 4.26 1.86 4.35

20 174 16 0 0.29 1.39 944.98 2914.05 19.18 141 0.98 5.31 1.88 4.45

30

6 183 7 0 0.02 0.14 404.54 2298.24 5.40 147 0.82 3.97 1.37 2.63

15 181 9 0 0.05 0.32 517.10 2844.93 2.91 147 0.87 4.48 1.47 3.04

180 10 0 0.19 1.79 579.89 2322.83 8.72 145 0.86 5.04 1.47 3.04

U
[1

, 5
0]

50

10 86 93 11 1.57 3.02 6054.35 6912.33 607.74 68 1.65 3.46 3.76 5.20

25 90 91 9 1.95 4.69 5784.14 7379.53 473.30 70 1.79 4.70 4.36 6.31

50 83 99 8 3.57 12.78 6235.78 7646.24 809.64 67 2.17 6.71 5.45 11.15

100

20 128 61 1 0.46 1.20 3612.49 5438.93 290.02 85 1.04 2.80 3.34 4.87

50 128 61 1 0.52 1.75 3588.54 4836.67 318.69 86 0.98 2.71 3.59 6.29

100 127 62 1 0.47 1.73 3673.17 4789.80 295.42 84 0.95 2.81 3.59 6.26

150

30 144 46 0 0.53 1.66 2696.81 4055.94 214.97 90 1.18 3.31 3.45 5.27

75 140 50 0 0.99 3.33 2973.29 4167.07 301.97 89 1.61 4.80 3.63 6.02

150 142 48 0 2.28 6.43 2917.58 4884.92 310.06 87 2.32 7.34 3.62 6.02

Total (out of 
NPI=3420) 2567 819 34 1964

Average 0.80 2.67 2791.95 4750.42 243.02 1.26 4.83 2.77 5.14

NPI: Number of problem instances, NOS: Number of optimally solved instances, NBIS: Number of best integer solutions obtained only, 
NNS: Number of instances with LP-Relaxation (non-integer) solution, NNS = NPI - (NOS + NBIS)

Table 4. Performance of the solution approaches when TW  and TU  changes



30 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

Performance of the initial schedules for the heuristic 
algorithm

As it is mentioned in Section 5, two initial sched-
ules are generated in the first phase of the heuristic 
algorithm. In our computational study, we also test 
the performance of the initial schedules. Our compu-
tational results show that the heuristic algorithm with 
Initial Schedule 1 finds 3,214 best solutions for 3,420 
solved problem instances. However, the heuristic al-
gorithm with Initial Schedule 2 finds 2,556 best so-
lutions. This result implies that the performance of 
Initial Schedule 1 is better than that of Initial Sched-
ule 2.

Effects of the phases in the heuristic algorithm

As discussed in Section 5, the heuristic algorithm 
has four phases, and applying each phase decreases 
the percent error of the heuristics’ makespan from 
the optimal one but increases the computational ef-
fort. Thus, a user may not want to apply some of the 
phases in order to get a solution in a very short time. 

To evaluate the effects of phases in the heuristic 
algorithm, we consider the percent improvement on 
the makespan from one phase to another. Percent 
improvement obtained by a phase is calculated as 

 where  is 
the makespan value obtained by Phase 𝑖 (i=2,3,4). 
We have investigated the performance of phases in 
the algorithm concerning the changes in TW and TU 
values. The percent improvement on the makespan 
by Phase 2 strongly increases as the maximum work-
ing time and the range of processing times increase. 
The length of the unavailable period is significantly 
effective and improves the performance of Phase 2. 
Phase 3 slightly improves when the maximum work-
ing time increases for the problem sets with pj~U[1, 
10], and it fluctuates randomly in problem sets with 
pj~U[1, 50]. Furthermore, Phase 3 does not illustrate 
any observable behavior when the length of the un-
available period increases. In the problem sets with 
pj~U[1, 50], the percent improvement of Phase 3 is 
better than the problem sets with pj~U[1, 10]. We 
have also observed that the percent improvement 
obtained by Phase 4 increases as the length of the 
unavailable period increases. The percent improve-
ment of Phase 4 decreases as the maximum working 
time increases in the problem sets with pj~U[1, 10]. 
However, it does not show systematic behavior for 
percent improvement of Phase 4 in the problem sets 
with pj~U[1, 50]. In our study, we observe that the 
most significant average improvement is achieved 
by Phase 2, and its average improvement is 17.46 

percent since the percent improvements by Phases 
3 and 4 are 0.70 and 1.45, respectively. Therefore, 
Phase 2 of the algorithm is the most effective. Its av-
erage improvement decreases as the number of jobs 
increases and increases as the number of machines 
increases.

In our study for evaluating the performance of 
phases in the algorithm, we have observed that the 
average CPU times for Phases 1, 2, and 3 are close 
to zero, less than 0.02 seconds for each phase, to 
comment on the effects of TW and TU values. Phase 
4 requires more CPU time, with an average of about 
2.77 seconds. It does not illustrate any relation with 
different TW and TU values. In other words, a random 
pattern is observed as TW and TU values change in 
Phase 4. However, the average CPU time of Phase 4 
in the problem sets with pj~U[1, 50] is higher than in 
the sets with pj~U[1, 10]. Thus, we propose that the 
user either employ the first three phases with short 
computational times or use all phases to find better 
solutions by consuming more time.

6.4. Theoretical implications of the study

The proposed MILP model in Section 4 repre-
sents a novel approach to address unrelated parallel 
machine scheduling problems under machine avail-
ability constraints. In comparison to similar models 
provided in the existing literature, this model shows 
an advantage in terms of requiring a relatively small 
number of decision variables and constraints. Conse-
quently, it can be inferred that this model offers ease 
of implementation and applicability to solve small-
sized problem instances. Furthermore, it serves as 
a foundational framework that can be adapted for 
addressing related problems with different objective 
functions and constraints. For instance, total tardi-
ness and completion time can be minimized with mi-
nor adjustments in the current MILP model. 

Similarly, the proposed heuristic algorithm ex-
hibits simplicity and practicality in its application. 
The heuristic algorithm can also be used as a local 
search procedure in developing metaheuristic algo-
rithms such as Tabu search and simulated annealing. 
Furthermore, with slight modifications, our heuris-
tic algorithm can be adapted to handle alternative 
performance measures such as total tardiness and 
completion time. Moreover, the algorithm can be 
used with minor modifications for studying different 
problem characteristics such as sequence-dependent 
setup times, ready times, and delivery times.



31Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

7. Conclusions and future research 
directions

This paper considers a makespan minimization 
problem of scheduling multiple independent and 
non-resumable jobs on unrelated parallel machines 
subject to machine availability and eligibility con-
straints simultaneously. We develop a mixed integer 
linear programming model and propose a heuristic 
algorithm.

Our computational experiments show that solving 
the problem using a standard MILP solver is not a 
practical alternative, especially for large problem in-
stances. The results also reveal that the proposed heu-
ristic algorithm finds promising results as it optimally 
solves small-and medium-sized problem instances 
and finds near-optimal solutions for large instances in 
a short computational time. We also observe that in-
creasing the maximum working time has a significant 
positive effect on the performance of the MILP and 
the proposed heuristic algorithm. Furthermore, we 
observe that increasing the range of processing times 
makes the problem difficult to be solved. To guide 
users, we also discuss the effects of the phases in our 
proposed heuristic algorithm. We observe from our 
computational experiments that the computational 
times of the first three phases are minimal, and the 
solution quality is mostly improved in Phase 2. Al-
though the effect of Phase 4 is entirely satisfactory, it 
requires more computational time. Therefore, one 
can use the first three phases to get good results in 
a very short time or can use all phases to get better 
results at the expense of more computational effort.

Our study has some limiting assumptions for the 
problem environment under study. We assume that 
the setup time before processing a job is negligibly 
small so that it is added to the processing time of the 
job. However, setup times may not be insignificant 
and depend on the previously processed job on the 
same machine. That is, sequence-dependent setup 
times should be considered. In our study, we also as-
sume that jobs are non-resumable, although some or 
all jobs may be semi-resumable where a setup may be 
needed when a job is resumed. 

Furthermore, our problem assumes that the num-
ber of available tool changers (maintenance teams) 
is equal to or greater than the number of machines. 
This assumption leads to the possibility of concur-
rent tool changes during the job schedules. However, 
it may need more tool changers to change all the 
tools concurrently. In such cases, a more complex 
approach is required, involving the simultaneous 

scheduling of tool changers and jobs.
In addition to the possible future research direc-

tions by relaxing the limiting assumptions mentioned 
above, our study may have several extensions, which 
are open for future investigation. An extension would 
be studying the same problem considered in this pa-
per for other performance measures, such as mean 
flow time, maximum lateness, number of tardy jobs, 
and total weighted tardiness as in the study by Maeck-
er et al. [48]. As the second future research issue, 
the more realistic case with both resumable and non-
resumable jobs may also be worth studying. A third 
future research issue may be the study of the same 
problem with a constraint on overlapping unavailable 
periods on different machines when there is only one 
worker or a group of workers to do the maintenance 
tasks on all machines. On the other hand, consider-
ing future research issues with more realistic assump-
tions makes the problem more complicated. Hence, 
developing new mathematical models and heuristic 
algorithms seems to be a future research topic.

Funding

This research did not receive any specific grant 
from funding agencies in the public, commercial, or 
not-for-profit sectors.

References

[1] K.R. Baker, Introduction to sequencing and scheduling, 
New York: Wiley, 1974.

[2] M. Pinedo, Scheduling: Theory, algorithms, and systems, 
New York: Prentice Hall, 2008, doi: 10.1007/978-0-387-
78935-4.

[3]  C.Y. Lee, “Parallel machine scheduling with nonsimultaneous 
machine available time,” Discrete Appl. Math., vol. 30, no. 1 
pp. 53-61, Jan. 1991, doi: 10.1016/0166-218X(91)90013-M.

[4]  H.C. Hwang and S.Y. Chang, “Parallel machines scheduling 
with machine shutdowns,” Comput. Math. Appl., vol. 
36, No. 3, pp. 21-31, Aug. 1998, doi: 10.1016/S0898-
1221(98)00126-6.

[5] C.Y. Lee, “Machine scheduling with an availability 
constraint,” J. Glob. Optim., vol. 9, pp. 395-416, Dec. 1996, 
doi: 10.1007/BF00121681.

[6]  M.S. Akturk, J.B. Ghosh, and E.D. Gunes, “Scheduling 
with tool changes to minimize total completion time: Basic 
results and SPT performance,” Eur. J. Oper. Res., vol. 157, 
no. 3, pp. 784-790, Sep. 2004, doi: 10.1002/nav.10045.

[7]  Y. Ma, C. Chu, and C. Zuo, “A survey of scheduling with 
deterministic machine availability constraints,” Comput. 
Ind. Eng., vol. 58, no. 2, pp. 199-211, Mar. 2010, doi: 
10.1016/j.cie.2009.04.014.

[8]  J.S. Chen, “Optimization models for the tool change 
scheduling problem,” Omega-Int. J. Manage. S., vol. 36, no. 
5, pp. 888-894, Oct. 2008, doi: 10.1016/j.omega.2006.04.006



32 Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

[9]  M. Geurtsen, J.B.H.C Didden, J. Adan, Z. Atan, and I. 
Atan, “Production, maintenance and resource scheduling: 
a survey,” Eur. J. Oper. Res., vol. 305, no. 2, pp. 501-529, 
Mar. 2023, doi: 10.1016/j.ejor.2022.03.045

[10]  L.M. Pintelon and L.F. Gelders, “Maintenance management 
decision making,” Eur. J. Oper. Res., vol. 58, no. 3, pp. 
301,317, May. 1992, doi: 10.1016/0377-2217(92)90062-E

[11]  S. Batun and M. Azizoglu, “Single machine scheduling 
with preventive maintenances,” Int. J. Prod. Res, 
vol. 47, no. 7, pp.1753-1771, Apr.  2009, doi: 
10.1080/00207540701636348

[12] G. Pinto, F.J.G. Silva, N.O. Fernandes, R. Casais, A. 
Paptista, and C. Carvalho, “Implementing a maintenance 
strategic plan using TPM methodology,” Int. J. Ind. 
Eng. Manag., vol. 11, no. 3, pp. 192-204, Sep. 2020, doi: 
10.24867/IJIEM-2020-3-26.

[13] J. Blazewicz, M. Drozdowski, P. Formanowicz, W. Kubiak, 
and G. Schmidt, “Scheduling preemptable tasks on parallel 
processors with limited availability,” Parallel Com., vol. 
26, no. 9, pp. 1195-1211, Jul. 2000, doi: 10.1016/S0167-
8191(00)00035-1.

[14] G. Centeno and R.L. Armacost, “Parallel machine 
scheduling with release time and machine eligibility 
restrictions,” Comput. Ind. Eng., vol. 33, no. 1-2, pp. 273-
276, Oct. 1997, doi: 10.1016/S0360-8352(97)00091-0.

[15]  J.K. Lenstra, D.B. Shmoys, and E. Tardos, “Approximation 
algorithms for scheduling unrelated parallel machines,” 
Math. Program., vol. 46, pp. 259-271, Jan. 1990, doi: 
10.1007/BF01585745

[16]  M.C. Santoro and L. Junqueira “Unrelated parallel machine 
scheduling models with machine availability and eligibility 
constraints,” Comput. Ind. Eng., vol. 179, 109219, May 
2023, doi: 10.1016/j.cie.2023.109219.

[17] F. D’Amico, D.A. Rossit, and M. Frutos, “Lot streaming 
permutation flow shop with energy awareness,” Int. J. Ind. 
Eng. Manag., vol. 12, no. 1, pp. 25-36, Mar. 2021, doi: 
10.24867/IJIEM-2021-1-274.

[18] H. Kaid, A. Al-Ahmari, A. Al-Shayea, E. Abouel Nasr, 
A.K. Kamrani, and H.A. Mahmoud, “Metaheuristics 
for optimizing unrelated parallel machines scheduling 
with unreliable resources to minimize makespan,” 
Adv. Mech. Eng., vol. 14, no. 5, pp. 1-12, 2022, doi: 
10.1177/16878132221097023

[19]  V. Suresh and D. Chaudhuri, “Scheduling of unrelated 
parallel machines when machine availability is specified,” 
Prod. Plan. Control, vol. 7, no. 4, pp. 393-400, Apr. 1996, 
doi: 10.1080/09537289608930367

[20] D. Lei and S. He, “An adaptive artificial bee colony for 
unrelated parallel machine scheduling with additional 
resource and maintenance,” Expert Syst. Appl., vol. 205, 
Nov. 2022, doi: 10.1016/j.eswa.2022.117577.

[21] O. Avalos-Rosales, F. Angel-Bello, A. Álvarez, and Y. 
Cardona-Valdés, “Including preventive maintenance 
activities in an unrelated parallel machine environment 
with dependent setup times,” Comput. Ind. Eng., vol. 123, 
pp.364-377, Sep. 2018, doi: 10.1016/j.cie.2018.07.006.

[22]  S.Y. Chang and H.C. Hwang, “The-worst case analysis of 
the MULTIFIT algorithm for scheduling non-simultaneous 
parallel machines,” Discrete Appl. Math., vol. 92, no. 2, pp. 
135-147, June 1999, doi: 10.1016/S0166-218X(99)00049-9.

[23]  A. Gharbi and M. Haouari, “Optimal parallel machines 
scheduling with availability constraints,” Discrete Appl. 
Math. Vol. 148, no. 1, pp. 63-87, Apr. 2005, doi: 10.1016/j.
dam.2004.12.003.

[24]  H.C. Hwang, K. Lee, and S.Y. Chang, “The effects of 
machine availability on the worst-case performance of 
LPT,” Discrete Appl. Math., vol. 148, no. 1, pp. 49-61, Apr. 
2005, doi: 10.1016/j.dam.2004.12.002.

[25]  W.C. Lee and C.C. Wu, “Multi-machine scheduling with 
deteriorating jobs and scheduled maintenance,’’ Appl. 
Math. Model., vol. 32, no. 3, pp. 362-373, Mar. 2008, doi: 
10.1016/j.apm.2006.12.008.

[26]  L. Grigoriu and D.K. Friesen, “Scheduling on same-speed 
processors with at most one downtime on each machine,” 
Discrete Optim., vol. 7, no. 4, pp. 212-221, Nov. 2010, doi: 
10.1016/j.disopt.2010.04.003.

[27]  A.A. Masmoudi and M. Benbrahim, “New heuristics to 
minimize makespan for two identical parallel machines 
with one constraint of unavailability on each machine,” in 
International Conference on Industrial Engineering and 
Systems Management (IESM), Seville, Spain, 2015, doi: 
10.1016/j.disopt.2010.04.003.

[28] S. Pries and C.G.S Sikora, “Decomposition approach for 
integrated production scheduling and maintenance planning 
on parallel machines,” in Selected topics on integrated 
production-scheduling and maintenance-planning 
problems, S.H. Pries, Ed. Hamburg, Germany, Univesitat 
Hamburg, 2022, pp. 50-68.

[29]  J. He, Q. Li, and D. Xu, “Scheduling two parallel machines 
with machine-dependent availabilities,” Comput. Oper. 
Res., vol. 72, pp. 31-42, Aug. 2016, doi: 10.1016/j.
cor.2016.01.021.

[30] C. Beaton, C. Diallo, and E. Gunn, “Makespan 
minimization for parallel machine scheduling of semi-
resumable and non-resumable jobs with multiple availability 
constraints,” INFOR, vol. 54, no.4, pp. 305-316, Mar. 2016, 
doi: 10.1080/03155986.2016.1166795.

[31]  D. Xu and D.L. Yang, "Makespan minimization for two 
parallel machines scheduling with a periodic availability 
constraint: Mathematical programming model, average-
case analysis, and anomalies,” Appl. Math. Model., vol. 
37, No. 14-15, PP. 7561-7567, Aug. 2013, doi: 10.1016/j.
apm.2013.03.001.

[32]  D. Xu, K. Sun, and H. Li, “Parallel machine scheduling 
with almost periodic maintenance and non-preemptive jobs 
to minimize makespan,” Comput. Oper. Res., vol. 35, no. 4, 
pp. 1344-1349, Apr. 2008, doi: 10.1016/j.cor.2006.08.015.

[33]  D. Xu, Y. Yin, and H. Li, “Scheduling jobs under increasing 
linear machine maintenance time,” J. Sched., vol.13, pp. 
443-449, June 2010, doi: 10.1007/s10951-010-0182-0.

[34] G. Li, M. Liu, S.P. Sethi, and D. Xu, “Parallel-machine 
scheduling with machine-dependent maintenance periodic 
recycles,” Int. J. Prod. Econ., vol. 186, pp. 1-7, Apr. 2017, 
doi: 10.1016/j.ijpe.2017.01.014.

[35] Y.Y. Chen, P.Y. Huang, C.J. Huang, S.Q. Huang, and 
F.D. Chou, “Makespan minimization for scheduling on two 
identical parallel machines with flexible maintenance and 
nonresumable jobs,” J. Ind. Prod. Eng., vol. 38, no. 4, pp. 
271-284, Mar. 2021, doi: 10.1080/21681015.2021.1883131.

[36]  H. Yong H, “Uniform machine scheduling with machine 
available constraints,” Acta Math. Appl. Sin., vol. 16, 
pp.122-129, Apr. 2000, doi: 10.1007/BF02677672.

[37]  J. Kaabi, “Modeling and solving scheduling problem with 
m uniform parallel machines subject to unavailability 
constraints,” Algo., vol. 12, no. 12 pp. 247, Nov. 2019, doi: 
10.3390/a12120247.

[38] G.L. Vairaktarakis and X. Cai, “The value of processing 
flexibility in multipurpose machines,” IIE Trans., vol. 35(8) 
35, no. 8, pp. 763-774, 2003, doi: 10.1080/07408170304349.

[39] Y. Lin and W. Li, “Parallel machine scheduling of machine-
dependent jobs with unit-length,” Eur. J. Oper. Res., vol. 
156, no. 1, pp. 261-266, July. 2004, doi: 10.1016/S0377-
2217(02)00914-1.

[40] C.A. Glass and H. Kellerer, “Parallel machine scheduling 
with job assignment restrictions,” Nav. Res. Logist., vol.  54, 
no. 3, pp. 250-257, Dec. 2007, doi: 10.1002/nav.20202.



33Kurt and Çetinkaya

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

[41] L.W. Liao and G.J. Sheen, “Parallel machine scheduling 
with machine availability and eligibility constraints,” Eur. J. 
Oper. Res., vol. 184, no. 2, pp. 458-467, Jan. 2008, doi: 
10.1016/j.ejor.2006.11.027.

[42] J. Ou, J.Y.T. Leung, and C.L Li, “Scheduling parallel 
machines with inclusive processing set restrictions,” Nav. 
Res. Logist., vol. 55, no. 4, pp.  328-338., Mar. 2008, doi: 
10.1002/nav.20286.

[43] X. Hu, J.S. Bao, and Y. Jin, “Minimising makespan on 
parallel machines with precedence constraints and machine 
eligibility restriction,” Int. J. Prod. Res., vol. 48, no. 6, pp. 
1639-1651, Apr. 2009, doi: 10.1080/00207540802620779.

[44] Y. Huo and J.Y.T. Leung, “Parallel machine scheduling 
with nested processing set restrictions,” Eur. J. Oper. Res., 
vol. 204, no. 2, pp. 229-236, Jul. 2010, doi: 10.1016/j.
ejor.2009.10.025.

[45] C.L. Li and X. Wang, X. “Scheduling parallel machines 
with inclusive processing set restrictions and job release 
times,” Eur. J. Oper. Res., vol. 200, no. 3, pp. 702-710, Feb. 
2010, doi: 10.1016/j.ejor.2009.02.011. 

[46] E.B. Edis and I. Ozkarahan, “A combined integer/constraint 
programming approach to a resource-constrained parallel 
machine scheduling problem with machine eligibility 
restrictions,” Eng. Optim, vol. 43, no. 2, pp.  135-157, Feb. 
2011, doi: 10.1080/03052151003759117.

[47] M. Afzalirad and J. Rezaeian, “Resource-constrained 
unrelated parallel machine scheduling problem with 
sequence dependent setup times, precedence constraints 
and machine eligibility restrictions,” Comput. Ind. Eng., vol. 
98, pp. 40-52, Aug. 2016, doi: 10.1016/j.cie.2016.05.020.

[48] S. Maecker, L. Shen, and L. Mönch, “Unrelated parallel 
machine scheduling with eligibility constraints and delivery 
times to minimize total weighted tardiness,” Comput. 
Oper. Res., vol 149, 105999, Jan. 2023, doi: 10.1016/j.
cor.2022.105999.

[49]  J.Y.T. Leung and C.L. Li, “Scheduling with processing set 
restrictions: a survey,” Int. J. Prod. Econ., vol. 116, no.2, pp. 
251-262, Dec. 2008, doi: 10.1016/j.ijpe.2008.09.003.

[50]  J.Y.T. Leung and C.L. Li, “Scheduling with processing set 
restrictions: a literature update,” Int. J. Prod. Econ., vol. 
175, pp. 1-1, May. 2016, doi: 10.1016/j.ijpe.2014.09.038.

[51] G.J. Sheen, L.W. Liao, and C.F. Lin, “Optimal parallel 
machines scheduling with machine availability and eligibility 
constraints,” Int. J. Adv. Manuf. Technolf, vol. 36, pp. 132-
139, Feb. 2008, doi: 10.1007/s00170-006-0810-1.

[52] V. Cunha, I. Santos, L. Pessoa, and S. Hamacher, “An ILS 
heuristic for the ship scheduling problem: application in the 
oil industry,” Intl. Trans. in Op. Res., vol. 27, no. 1, pp. 197-
218, Jan. 2020, doi: 10.1111/itor.12610.

[53]  K. Fleszar and C. Charalambous, “Average-weight-
controlled bin-oriented heuristics for the one-dimensional 
bin-packing problem,” Eur. J. Oper. Res., vol. 210, no. 2, 
pp. 176-184, Apr. 2011, doi: 10.1016/j.ejor.2010.11.004.

[54]  O. Alagoz and M. Azizoglu, “Rescheduling of identical 
parallel machines under machine eligibility constraints,” 
Eur. J. Oper. Res., vol. 149, no. 3, pp. 523-532, Sep. 2003, 
doi: 10.1016/S0377-2217(02)00499-X.


