
Softbots 4.0: Supporting Cyber-Physical Social 
Systems in Smart Production Management

1. Introduction

Industry 4.0 can be defined as a production model 
characterized by the intensive digitalization, use of en-
abling technologies, and flexible interconnection of 
smart production systems and value chains to attend 
customer needs more effectively, applying business 
models based on the Internet of Things, Services, 
and People (IoTSP) [1-3]. Manufacturing enterprises 
have gradually adopted Industry 4.0 to improve their 
general efficiency and sustainability while coping with 

the need for highly customized, shorter product lifecy-
cles, and emerging business models [4, 5]. Benefiting 
from the advances in industrial automation, informa-
tion and communication technologies (ICTs) as well 
as from control and management models, shop floor 
systems and equipment, have also turned into much 
more active entities within wider, intensively collab-
orative, and smarter production environments [5].

Production Management refers to planning, coor-
dinating, and controlling the resources required for 
fabricating specified products by specified methods. 

This paper presents the results of a research work that aimed at investigating the usage of soft-
bots – as digital intelligent software assistants – as a supporting technology to help in excelling 
smart production management composed of cyber-physical systems (CPS). This work also 
attempts to differentiate the many equivalent terms used in the literature to softbots, trying 
to demonstrate that all of them are just types of softbots. Softbots 4.0 acts as a smart human-
machine interface, representing a digital virtual assistant to handle human-related issues when 
implementing the concept of Operator 4.0. Yet, the concept of Softbot 4.0 is framed against 
the RAMI 4.0 model in a way to show how it can also be taken as an (intelligent) manufactur-
ing entity. The main goal of Softbots 4.0 is to support the Operator 4.0 in interfacing with 
smart machines, robots, and systems, aiding people in the automatic, planned or pro-active 
execution of different, repetitive or complex tasks, efficiently in a more symbiotic human-ma-
chine environment. Five different cases have been selected for the assessment, implemented 
as software prototypes in different production management and shop floor control scenarios 
close to real CPS. The high potential of the softbots approach could be observed, especially 
when combined with other enabling technologies for Industry 4.0. A global assessment and 
reflections on these experiments are discussed at the end.
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It handles activities like the selection of products, pro-
duction processes and the right production capacity, 
production planning, inventory control, maintenance 
of machines, production control, and quality and cost 
control. In essence, this means ensuring that produc-
tion is running as planned, that corrective actions are 
taken in the case of deviations, and that products are 
produced with the expected quality, using the right re-
sources, at the lowest cost, with minimum delays, in a 
way that the company remains sustainable [6].

Smart Production Management involves handling 
those aspects helped by integrated sensors, cyber-
physical systems (CPS), and computing platforms, 
including intensive data modelling and predictive en-
gineering for high-quality decision-making [3].

In this smart context, one of the strategies being 
pursued by companies in their digital transforma-
tion path towards Industry 4.0 is the development of 
smarter environments, where workers are provided 
with integrated, easier, quicker, more systematic, and 
more accurate access to information related to diverse 
companies’ areas, including the shop floor. Their ul-
timate goal is to support more agile, comprehensive, 
and confident (data-driven) decision-making, nowa-
days mostly supported by management and opera-
tional dashboards [7-10]. However, this is not simple. 
The challenges can be illustrated by a study close to 
more than 150 professionals from world-class large 
companies [11]:

• 45% of respondents say, “their organization has 
not realized the full value of data”. 

• 63% believe that “inaccurate, outdated or oth-
erwise bad data has been used to fuel business 
decisions in their organizations”.

• 64% say that this bad data brought bad reper-
cussions, including “having to restart a project 
(57%), missing a business opportunity (53%), 
wasting time on a project (43%), getting fined 
due to lack of compliance (37%), losing fund-
ing on projects (33%), and reversing business 
decisions (29%)”.

• 83% say there is a “prevalence of ‘dark data’, 
i.e., data that is collected but not used to glean 
insights for decision-making”.

• (Only) 23% “explore data for insights at their 
organizations” and 39% “believe only half or 
less of their team has the skills needed to make 
use of data”.

• 34% say they “spend 16 to 20+ hours per week 
manually finding, managing, and gleaning in-
sights from data each week. […] indicates that 
users do not have the tools they need”.

It is also highlighted that much information is not 
digitalized and hence cannot be used for companies’ 
real-time analyses. On the other hand, several existing 
data that is usually spread over many disparate and 
isolated repository silos and not properly integrated 
legacy systems, which are implemented using differ-
ent technologies, formats, terminologies, and security 
schema, making the access, understanding, and usage 
of the right information sometimes challenging for 
the decision-makers at all company’s levels [8, 12]. 
Besides that, despite the benefits of data-driven en-
vironments, they can bring more complexity to man-
agers. The practice has been showing that workers 
have been increasingly exposed to massive amounts 
of data about several companies’ processes and re-
sources, suppliers, customers, and service providers, 
leading to many situations of cognitive stress. This, in 
turn, leads to potentially less comprehensive or even 
wrong analyses and decision-making due to the usual 
many checking, analyses, supervision actions, etc., 
that need to be more often and rapidly performed by 
shop floor operators and managers [13, 14].

Many Industry 4.0 projects have underestimat-
ed the impact on the workers caused by the deep 
changes in the organizations’ processes and by the 
involved technologies [15, 16]. Several authors (e.g.: 
[10, 13, 15, 16]) have pointed out the need for a shift 
in the way workers, systems, and machines interact 
to enhance operational excellence and human satis-
faction towards a cognitive, smart industry. Different 
concepts have arisen from this need, such as “Social 
Smart Factory”, “Human Cyber-Physical Systems”, 
and “Cyber-Physical Social Systems” [17, 18], which 
can be generally defined as environments where 
implicit and explicit knowledge related to activities, 
preferences, and other human elements are consid-
ered in the production system via smart technologies 
in the virtual, physical, and social worlds for smarter 
decision-making within smarter working manufactur-
ing environments.

One direction to this emergent type of environ-
ment is embraced and represented by the concept of 
Operator 4.0 [15]. It relies on a vision where “smart 
and skilled operators should perform not only ‘co-
operative work’ with robots, but also ‘work aided’ by 
machines as and if needed, by means of human CPS, 
advanced human-machine interaction technologies 
and adaptive automation towards ‘human-automa-
tion symbiosis work systems”. This concept is one of 
the pillars that the European Commission has taken 
in its vision for Industry 5.0 towards placing work-
ers’ well-being at the centre of the production pro-
cess, including providing more symbiotic means of 
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human-machine interactions [19]. However, the path 
towards its implementation is not clear at all [20], re-
quiring larger research efforts [21, 22].

Several approaches can be adopted to support the 
implementation of the diverse types of Operator 4.0, 
as depicted in [20] and [23], being software robots 
(or just softbots) a very promising one [24-26]. A soft-
bot can be generally defined as a computer program 
that interacts and acts on behalf of a user or another 
program [24]. Software robots bridge user needs and 
bot services to execute functions that are provided by 
other systems [27]. 

This kind of software assistance tends to become 
an integral part of how people live and work [28], 
helping humans in reasoning and decision-making, 
physical activities, communicating and interacting, in-
formation evaluation, and data processing [12]. Gart-
ner predicts that 50% of knowledge workers will use 
some kind of virtual assistant daily by 2025, up from 
2% in 2019 [29].

 Looking at the Operator 4.0 concept, softbots can 
support the implementation of the Smarter Operator 
4.0 subtype [16]: it can interface with smart machines 
and robots, computers, databases, and other infor-
mation systems, aiding the worker(s) in the execution 
of different tasks in human-like interactions in many 
industrial scenarios. To this type of softbot, we re-
fer as “Softbot 4.0”, which we define as an intelligent 
social agent immersed in an industrial computing 
ambient that is capable of assisting workers in more 
intelligent management and automation of business 
processes, computer systems, cyber-physical systems, 
and production assets, within an Internet of Things, 
Service, and People environment. Relying on natu-
ral language processing technologies and smart text-
voice-visual interfaces, it can realize the environment 
it is immersed in, collect data, understand, and learn 
from the interests and behaviour of its users; plan 
and execute tasks autonomously, proactively, or on 
users’ behalf; respond according to users’ requests, 
preferences, expertise level, and business contexts; 
and warn or prevent users from requesting wrong or 
unsuitable actions. In a very simple way, we could 
say that a Softbot 4.0 means acting as a workers’ part-
ner, helping them, in different manners, to handle 
their daily tasks, technical problems, and any other 
work-related topic, more effectively, cleverly, and in 
a friendly way.

Romero et al. [15] have identified eight catego-
ries of possible applications where human operators 
might be aided by intelligent software in Industry 4.0, 
as softbots represent. Softbots are also seen as a pow-
erful approach to facilitate the introduction of mod-

ern digital lean manufacturing and Jidoka concepts to 
help humans in quality control [30, 31].

A Softbot 4.0 intends to act as what Preece et al. 
[32] call a third generation of human-machine in-
terfaces (HMIs), which are designed to support us-
ers with less mechanical, more intuitive, intelligent, 
adaptive, and emotional/social levels of interaction. 
In manufacturing, for example, Softbots 4.0 can be 
implemented as a new communication channel with 
systems and machines, or be implemented as “intel-
ligent interaction wrappers” on top of CPS or legacy 
systems/machines. The interaction of softbots with 
humans can be provided by different means, like 
web browsers and desktop computers, mobile devic-
es, wearables, holography, augmented reality, natural 
language, haptics, etc. [33]. Korhan et al. [34] argue 
that such kind of HMI represents a means to imple-
ment the emergent concept of cognitive ergonomics 
as modernized shop floors need to help operators in 
doing tasks that require mental cognition (such as de-
cision-making, planning, situational knowledge, etc.).

Given this potential, the goal of this paper is to 
show some real examples and assess the use of soft-
bot technology in helping workers better manage 
production in social CPS. The main motivations for 
this research work are threefold: (i) the works on the 
application of softbots (or similar concepts) in Indus-
try 4.0 scenarios are presented as trends and theoreti-
cal reflections; (ii) the implementation of softbots has 
not been devised to support the Smarter Operator 
4.0 concept; and (iii) the implementation of industrial 
softbots has been mostly deployed as simple chatbots 
not directly linked to real CPS. 

This paper is organized as follows. Sections 1 and 
2 present the research motivations, aims, and meth-
odology for this work. Section 3 provides a review 
of softbots and equivalent concepts. Section 4 sum-
marizes related works on softbots in manufacturing. 
Section 5 shows the developed case prototypes and 
the achieved results. Section 6 presents the conclu-
sions of this research.

2. Basic Research Methodology

Considering the paper’s goal, this work has been 
fundamentally designed to evaluate the use of soft-
bots technology in Industry 4.0 scenarios as a means 
to support the implementation of the Smarter Op-
erator 4.0 subtype [15]. Given the wide scope of In-
dustry 4.0, the intended assessment has focused on 
production management and shop floor control of 
real manufacturing CPS.
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From this perspective, the research methodology 
was split into three main steps. Firstly, a general sur-
vey on softbots was carried out having as the essential 
goal of compiling and clarifying related concepts of 
softbots. Secondly, a search on the ScienceDirect, 
ACM, and IEEExplorer scientific databases was 
made looking for works on softbots and equivalent 
terms. However, the objective of this step was not to 
provide a comprehensive state-of-art literature review 
on softbots in general. Instead, it was finding out rele-
vant works that have proposed contributions directly 
related to the use of softbots (or equivalent concepts) 
to help workers – as Operators 4.0 – in their interac-
tions with manufacturing CPS to assist them at dif-
ferent levels of production management. Finally, five 
implemented cases were selected, described, and as-
sessed.

Non-scientific materials, such as companies’ blogs 
or their commercial advertisements and web pages 
(as the digital assistants of SAP’s ERP [35] and Or-
acle DA [36]), were avoided as they do not use to 
disclose technical information about how their soft-
bots (or equivalent) have been actually implemented, 
integrated, and further assessed, especially when real 
CPS is involved.

3. Softbots

3.1. Basic Concepts and Applications of 
Softbots

There are many definitions in the literature of 
what a softbot is. To the best of our knowledge, the 
first formal mention of softbots was given by Etzioni 
et al. [37], which used them as a high-level interface 
to help users in the search for WWW resources. 
Another example is provided in [38], as a “virtual 
system deployed in a given computing environment 
that automates and helps humans in the execution of 
tasks by combining capabilities of conversation-like 
interactions, system intelligence, autonomy, proactiv-
ity, and process automation”.

The search for less friction in human-system inter-
action is not a new subject. The first article about chat-
bots – a conversational software bot – was published 
almost 60 years ago, a software that allowed users to 
interact with computers via natural language [39]. 
Many years later, and possibly due to the emergence 
of the Internet and research boom in the Distributed 
Artificial Intelligence area from the mid-80s, many 
works started to propose models and implement 

intelligent softbots as “agents” (e.g.: [40-50]). They 
combined chatting capabilities with programmed ac-
tions to be performed via requests from or on behalf 
of users to grab useful information from the Internet 
in different domain areas. Several relevant devel-
opment environments to implement chatbots have 
been developed since then by large software houses 
and research projects, such as Cortana [51], Sandy 
[52], Siri [53], PAL [54], Narval [55], Watson [56], 
and Alexa [57]. Very recently, ChatGPT [58] has 
arisen as a powerful AI-based chatbot that is capable 
to answer questions from very broad subjects. Areas 
of application are many, including travelling, health, 
banking, and government. However, very few works 
have been directed to production management and 
shop floor control in Industry 4.0 scenarios [59].

Hermans [40] has identified eight examples of ap-
plication areas where softbots – as intelligent agents 
– can be useful:

i. Systems and Network Management – Intelli-
gent softbots can be used to enhance systems 
management software. For example, they 
can help filter and take automatic actions at a 
higher level of abstraction; they can be used to 
detect and react to patterns in the system’s be-
haviours; and they can be used to manage large 
configurations dynamically.

ii. Mobile Access/Management – Intelligent 
softbots can reside in the network rather than 
on the user’s personal computers, perform-
ing user requests persistently despite network 
problems. In addition, they can process data 
locally and send only compressed answers to 
the user rather than overwhelming the network 
with large amounts of unprocessed data.

iii. Mail and Messaging – Intelligent softbots can 
facilitate these functions by allowing mail han-
dling rules to be specified ahead of time, letting 
softbots operate on behalf of the user accord-
ing to those rules and identifying the user’s be-
haviour patterns.

iv. Information Access and Management – In-
telligent softbots can help users not only with 
search information and filtering, but also with 
categorization, prioritization, selective dissemi-
nation, annotation, and (collaborative) sharing 
of information and documents.

v. Collaboration – Intelligent softbots can help us-
ers build and manage collaborative teams and 
manage their work products within groupware 
environments.
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vi. Workflow and Administrative Management – 
Intelligent softbots can help in workflow pro-
cess automation, making them more efficient 
while reducing costs and human intervention.

vii. Electronic Commerce – Intelligent softbots can 
“go shopping” for a user, taking specifications, 
and returning with purchase recommenda-
tions. Softbots can act as “salespeople” for sell-
ers by providing product or service sales advice 
and helping troubleshoot customer problems.

viii. Adaptive User Interfaces – Intelligent softbots 
can monitor users’ actions, develop models 
upon their abilities, and automatically help 
when problems arise. When combined with 
speech technology, they can enable computer 
interfaces to become more human or more 
“social”.

Despite all these potentials, many projects have 
not reached the foreseen expectations. According to 
a survey on the use of conversational softbots (chat-
bots) [26] considering 529 respondents from North 
America and Europe from various companies from 
different sectors and sizes, the following result has 
been reached: for almost 50% of the users the chatbot 
gave useless responses; almost 40% said that the chat-
bot quite often redirected users to self-serve FAQs 
given its inability to provide some answer; almost 39% 
affirmed that chatbots provided bad quality sugges-
tions; 59% stated that chatbots misunderstood users’ 
requests as well as could not handle nuances of hu-
man dialogue; and for 30% the chatbot executed inac-
curate commands. The survey also pointed out two 
main reasons for these drawbacks. The first one refers 
to the lack of deeper involvement of businesspeople 
in the project formulation. The second one refers to 
the lack of knowledge from softbot developers as the 
implementation of interactive interfaces – as required 
by this type of system – is very different from the de-
velopment of web or business application interfaces.

3.2. Softbots Properties   

Several definitions for softbots are influenced by 
the application domain they were applied to [27]. As 
an attempt to provide a generalized view of softbots 
from the system requirements point of view, some se-
lected works have been analysed [14, 27, 40, 59-69], 
and the following properties for a “near-complete” 
softbot could be identified:

• (Some level of) Knowledge about the subjects it 
has to deal with, also considering that this knowl-

edge can be continuously enriched throughout 
time, both by the softbot’s designers and by the 
own softbot thanks to its autonomy and intel-
ligence.

• (Some degree of) Autonomy to reason, evolve, 
plan, and deliberate about why, what, when, 
where, and how to do it, whom to communi-
cate with, regarding how much the chosen ac-
tions will cost in terms of time, performance, 
resources, etc.

• (Some level of) Intelligence to learn from its in-
teractions (with humans, systems, and sensors), 
and to evolve according to; to make inferences 
regarding imprecise or incomplete information 
present in conversations; and to filter and select 
correct, trustworthy, and less costly information 
sources, including trying to avoid peak-hours on 
the Internet when possible.

• Coordination of actions given the different execu-
tion paths (contexts) and sequences of (sync and 
async) function invocations to different systems 
for different and sometimes simultaneous users.

• (Some degree of) Flexibility to act and to inter-
act in different scenarios in different contexts.

• (Some degree of) Adaptability to consistently 
act and interact with different actors regarding 
their preferences, emotions, and the knowledge 
it has about them.

• Sociability to sense, interact and interoperate 
seamlessly with different users and systems us-
ing proper low-level and high-level communica-
tion protocols and semantics.

• Integrability with other systems (including other 
softbots), computing environments and smart 
devices (such mobile devices, wearables, etc.), 
and Interoperability to guarantee seamless in-
formation exchange (control and data) and por-
tability.

• (Some level of) Security to protect itself from 
external malicious attacks and from being ac-
cessed by non-authorized actors.

• (Some level of) Self-management to evaluate it-
self against its goals and performance metrics; 
supervise the execution of its actions; monitor 
the computing environment it is running in 
and its execution status; and be resilient to take 
proper measures to remain alive.

• Performance to execute its tasks promptly, cor-
rectly, completely, and reliably, regarding its re-
sources and local goals.

• Usability in terms of e.g.: deployment, configu-
rability, operability, modifiability, and accessi-
bility.
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Lebeuf et al. [27] argue that, however, several 
domain problems do not require all such softbots’ 
properties or implementation complexities, pointing 
out that developers should design them and focus on 
what the intended softbot is going to be for.

When directed to manufacturing, and hence to 
Softbot 4.0 concept, these properties should then be 
linked to production management, shop floor con-
trol, and CPS.

Softbots can be seen as just another technology 
with a very high potential to add value to smart in-
dustries. However, it is not able to solve “anything” 
alone. Real applications of softbots in Industry 4.0 
scenarios represent a reasonably complex endeavour, 
requiring the combination and integration of other 
technologies, such as IoT and industrial networks, 
cloud computing, software engineering and integra-
tion/interoperability techniques, AI, planning strate-
gies, data storing, HMI technologies, communication 
protocols, fault tolerance, etc. [69].

Being software, a softbot’s architecture, implemen-
tation model, knowledge representation model, and 
internal programming paradigm can vary a lot from 
case to case. This means that a softbot can be very 
simple in terms of e.g., interactions and reasoning 
capabilities, be a small piece of software, monolithic-
like and lightweight; or be a very complex and/or large 
software, services-based and distributed, security-em-
bedded, supporting different and adaptive interaction 
models, using multiple communication protocols and 
APIs/other services and libraries, linked to physical 
equipment or IoT devices, responding to multiple 
QoS requirements, and AI-based (including complex 
machine learning algorithms, etc.).

From the implementation point of view, a softbot 
can be implemented using different patterns, depend-
ing on its application and execution environment. For 
example, it can be developed by adopting a three-tier 
architecture (where a program is physically split into a 
presentation, a process, and a data layer, especially in 
the case of being conceived as a web-based application) 
and its variations, like the MVC model (Model-View-
Controller, especially in the case of being a mobile 
App for different types of devices, as smartphones, 
tablets and wearables); as a classical monolithic soft-
ware, or as one developed under a service-oriented 
perspective. In terms of deployment, it can also vary, 
e.g., from being deployed in a local server, in a local 
cloud, in a private external cloud, and be accessed as 
an on-premises application or as SaaS (Software-as-a-
Service). Internal system elements can communicate 
with each other via file transfer, database, remote in-
vocation procedures, messaging, etc. [70].

3.3. Types of Softbots

Several concepts have some profound intersec-
tions with what a softbot is, and there is not a clear 
conceptual frontier established in the literature to 
differentiate them from each other. Given the broad 
notion of what a softbot can be, Lebeuf et al. [27] 
consider that such concepts or terminologies used in 
the literature are, actually, types of softbots, adopted 
by different authors depending on the type of inter-
action with users (which can comprise communica-
tions with other systems, services, and softbots), the 
softbot’s purpose, its scope of actions, and level of 
intelligence and autonomy.

Lebeuf et al. [27] proposed a softbots taxonomy, 
which groups those beforementioned softbots prop-
erties into three general ‘dimensions’ (environment, 
intrinsic, and interaction). Moreover, they see some 
concepts as evolutions or just as different types of 
softbots from the intelligence and autonomy levels 
points of view. For example, they consider (software) 
‘daemons’ as the most basic ones, ‘chatbots’ as an in-
termediate level of softbots, and ‘agents’ as the most 
advanced ones. However, this proposed organiza-
tion, besides being very general, seems quite incom-
plete when looking at several other terms/concepts 
some authors have been adopting in the last decades.

Other authors have proposed typologies for spe-
cific types of softbots. Wellsandt et al. [71], for in-
stance, presented a classification for digital personal 
assistants: (i) Adaptive voice assistants (viz.: speech, 
optical sensors, screen outputs, execute services 
upon request, general-purpose, adaptive, computer-
generated human-like voice); (ii) Chatbot assistants 
(viz.: text, images, videos, screen interaction, task-ori-
ented support, special purpose, present information 
to users, virtual characters); (iii) Embodied virtual 
assistants (viz.: human-like, speech, screen outputs, 
virtual characters, special purpose, adjust to user au-
tonomously, anthropomorphism); (iv) Passive perva-
sive assistants (viz.: unobtrusive, collects data from 
sensors, initiates interaction with the user, observes 
user’s tasks and context, autonomous, special pur-
pose); and (v) Natural conversation assistants (viz.: 
speech, imitate human natural language interactions, 
execute services upon request, static behaviour, un-
derstands compound commands).

Based on this rationale and the readings done for 
this work, the descriptions below represent an initial 
attempt towards comprising and differentiating the 
main types of softbots and used terminologies pre-
sented in the literature trying to clarify to which extent 
they can be considered as types of software bots. One 
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may see that some types have some overlapping with 
others or seem synonyms to others. The descriptions 
are based on some references, although the defini-
tion of the same concept is sometimes also blurry in 
the literature [27]. Our observation is that, after all, 
the different terminologies seem to just represent the 
implementation and focus on some of those different 
softbots’ properties, previously mentioned:

• A softbot can be considered as a (software and 
conversational) agent if it implements (at least) 
the three mandatory agents’ properties: (some) 
knowledge to solve some problem(s), sociabil-
ity (some interaction with humans), and (some 
level of) autonomy [72]. This happens regard-
less of its internal architecture (e.g., BDI [62]) 
or if it can move itself (mobile agents) through 
the network to execute its tasks within the digi-
tal environment inside the same or different 
security domain [73].

• A softbot can be considered as an intelligent 
system (sometimes called a Knowledge- or 
AI-based system) if it can perceive its environ-
ment, sensors, and humans, reason and plan 
accordingly and adaptively, and execute ap-
propriate actions considering its goals, plan re-
quirements, and the environmental conditions 
in which it will act. This means that even very 
simple, fast, and straightforward actions or an-
swers to users may be either a result of a deep 
reasoning process or be the very required ac-
tion for a severe problem in a critical virtual or 
physical system humans are managing [72].

• A softbot can be considered as a (virtual, intel-
ligent, or digital) personal assistant if its actions 
are devoted to coping with the very particular 
needs of one or a few users with similar goals 
within some domain areas [71].

• A softbot can be considered as a chatbot if it 
supports chatting (also called a “voice-enabled 
assistant”) and (mostly natural) language pro-
cessing related to a given subject [68, 74].

• A softbot can be considered as a bot or a dae-
mon if it were just programmed for doing very 
specific and somehow repetitive actions auto-
matically but provide some interaction with hu-
mans [27].

• A softbot can be considered as an immobot if 
it were specifically designed to monitor itself 
(e.g., when linked to a CPS) to keep it safe and 
running [75].

• A softbot can be considered as a holon if it were 
designed to actively represent physical entities 

of a factory, like parts, pallets, machines, and 
sensors as intelligent industrial objects [76].

• A softbot can be considered as an avatar if it 
were designed to represent, act, and interact 
with other users, systems, digital twins, or physi-
cal entities of a factory on behalf of the user 
[77].

• A softbot can be considered as an intelligent 
tutor if it were designed to teach humans adap-
tively and interactively, according to their cur-
rent knowledge, current profiles, and answers’ 
level (depth, number of hits, etc.), among other 
aspects.

• A softbot can be considered as a devbot if it 
were designed to help software developers dur-
ing the different phases of software develop-
ment, via reactive or proactive chatting, auto-
mation of some tasks on behalf of developers, 
etc. [78].

3.4. Softbots in Industry 4.0

In the context of Industry 4.0, there are important 
potential benefits of using softbots when dealing with 
production management, shop floor control, and in-
dustrial CPS. A compilation of this includes [12, 14, 
37, 59, 66, 71, 79-86]:

• Automatic and/or autonomous execution of ac-
tions, from simple alarms to complex business 
processes, involving (also on-the-fly) interoper-
ability with diverse systems and communication 
with diverse computing and hardware devices 
(e.g., exoskeletons, sensors, and AGVs).

• Higher efficiency and reduction of errors and 
rework when compared to humans, especially 
in repetitive, strenuous, hazardous, complex, 
unsafe, and/or unhealthy activities, are also 
helpful for unpaired operators.

• Higher availability, able to answer and process 
many actions simultaneously all the time.

• More user-friendly, intuitive, personal-like, af-
fective, and effective conversation when com-
pared to e.g., FAQs or text manuals on the 
Web, better supporting higher human-ma-
chine/computer symbioses.

• Easier and faster expression of the user’s de-
sire, sometimes via very short statements or 
talks, where the softbot can understand this and 
decompose that into many low-level computing 
actions.

• “Standard” answers, are important to guarantee 
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that both experienced operators and the ones 
in training will receive the complete enough 
and consolidated information needed.

• Adaptive and more objective answers regard-
ing operators’ experience, emotions, technical 
profile, business context, and personal goals’ 
status, leveraging higher operators’ and manag-
ers’ experience and work satisfaction.

• More “qualitative time” for humans for more 
valuable activities, such as management and 
reasoning, instead of lower-value activities, like 
checking boring and repetitive tasks.

• Accurate, real-time, up-to-date, and filtered 
information. Softbots can work 24x7 and can 
more efficiently have access to the right and 
authorized sources, also helping in the compa-
nies’ ICT governance and GDPR compliance.

• Intelligent content, filtering, reasoning, and 
pre-selecting useful data to be used in different 
business contexts and problems.

• Automatic gathering of operational data and 
dashboard generation based on business analyt-
ics (description, prediction, and prescription), 
for further performance evaluation as well as 
for assisted, interactive operators’ decision-
making, and conflict resolution (e.g., via auto-
matic negotiation, interactive bargaining, etc.).

• Recommendation of actions within business 
processes, like e-procurement and supply 
chain partner replacement, help-desk manage-
ment, customer relationship analyses, and e-
maintenance.

• Collaborative and coordinated actions with 
other softbots to enhance productivity and con-
flict resolution (e.g., machines negotiating with 
each other to see which is the most suitable one 
to execute a given manufacturing task).

• Learning and self-evolving behaviour, also help 
in the transformation of operators’ tacit knowl-
edge into corporates’ formal knowledge.

• Deeper integration of humans into predictive 
maintenance systems creates opportunities for 
‘hybrid-intelligence systems’, where humans 
and computers complement each other and 
evolve together, making humans more deeply 
involved in decision-making.

Wellsandt et al. [71] grouped these benefits and 
created a generic categorization for them in the con-
text of digital assistants in terms of which facilities they 
can provide for their users: (i) users’ central access 
point to systems; (ii) customizations for different us-
ers; (iii) tasks delegation (for automation purposes); 

(iv) holding users’ attention on some critical task or 
object; (v) users guidance when executing some more 
complex task; (v) hands-free operation (when using 
voice); (vi) mobile assistance (when users cannot be 
physically present); (vii) multiple interface types (via 
different interaction devices); (viii) permanent acces-
sibility (replacing users when they are off for some 
reasons); and (ix) faster tasks execution.

Conceptually, a softbot in manufacturing can be 
associated with one single system (e.g., one CPS) or 
it can embrace many systems and communicate with 
other softbots, so becoming a system of systems (for 
example, one softbot representing many CPSs of e.g., 
a manufacturing cell; or groups of softbots represent-
ing different manufacturing areas) [14]. Softbots can 
also work collaboratively with other softbots. In the 
manufacturing domain, a collaborative softbot can be 
defined as “a software agent that reactively or proac-
tively cooperates with other softbots, CPSs, informa-
tion systems and humans helping its users to solve 
complex or unfamiliar problems, and/or to take care 
of distributed information requests” [14]. Collabora-
tion is a result of a rational process that a softbot (in 
this case) can have and that ends up looking for ex-
ternal help [73]. This happens when it realizes it has 
not had enough or not trustworthy enough informa-
tion and capacity or capability to accomplish a given 
task respecting given requirements, or when it has no 
interest to accomplish the task on its own regarding 
its plans or execution costs [72]. Therefore, collabo-
ration does not mean forcing interactions between 
CPSs just to account for that, but rather to support 
it when needed.

In smart manufacturing, the concept of immobots 
(immobile robots) [75] seems quite applicable to CPS, 
although not much popular in the literature and not 
originally conceived for that. Designed to handle the 
requirements of stationary equipment in NASA space 
missions, immobots are a kind of software specifically 
designed to take care of equipment conditions and 
to take measures to keep them working permanently. 
Strongly relying on the autonomic computing para-
digm, their core functions include self-monitoring, 
self-awareness, self-maintenance, and learning. Their 
ultimate goal is to support the equipment to respond 
promptly, adaptively, and intelligently (logically or 
physically) according to its current internal status and 
external conditions. The sensing aspect is pretty much 
based on real-time data gathered by/from sensors 
linked to the equipment. Sensors, transductors, and 
actuators may be highly distributed, depending on the 
equipment’s purpose as well as on the instrumenta-
tion project that has been designed to get information 
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in a way to guarantee its correct functioning and physi-
cal integrity [75, 86]. When considering Industry 4.0, 
autonomous and intelligent CPS is a key issue to sup-
port. Therefore, all those properties of immobots are 
plausible to be implemented in manufacturing CPS, 
including the possibility to gently interact with human 
operators, maintenance technicians, etc., i.e., to use 
softbots in social CPS.

3.5. Softbots within RAMI 4.0 and other 
Models

Industry 4.0 is predominantly an information-
centric paradigm [2, 3]. Several architectures and 
conceptual platforms have been proposed to develop 
Industry 4.0 applications, the Reference Architectur-
al Model Industrie 4.0 (RAMI 4.0) [87] possibly the 
most recognized one. 

RAMI 4.0 proposes six functional layers in its ver-
tical axis (see Figure 1) for supporting vertical integra-
tion and networked production systems. Considering 
the research made in this work, no reference models 
(such as RAMI 4.0) do an explicit mention of soft-
bots (like ERP or MES systems are considered in the 
ISA-95 reference model). A possible reason for this 
is that softbots are just another enabling Industry 4.0 
technology, likewise, cloud computing and IoT. Try-
ing to place the softbots concept in the RAMI 4.0 
model, it can be said that softbots correspond to the 
digital part that allows an intelligent interaction with 
virtual or physical entities, as a computing system (de-
ployed at any company’s level) and a digital twin; or 
as a physical asset, like as an AGV, a machining cen-
tre, or an assembly part (see left side Figure 1). Figure 
1 also shows a vision of how softbots can be aligned 
to the RAMI 4.0 reference model.

Regarding the six-layer dimensions of RAMI 4.0, 
a softbot can be seen as a computing system concep-
tually organized in different modules. It performs 
a company’s business processes using a set of func-
tions. They require and exchange information/data, 
which are supported by proper communication in-
frastructures and protocols. Integration grants the in-
teroperable transition from the digital to the physical 
environment (the given assets), and vice-versa. 

RAMI 4.0 was conceived already based on the 
notion of non or less hierarchical/horizontal com-
munication between industries’ people, sectors, and 
systems, which is one of the fundamentals of Indus-
try 4.0. However, most industries have a brownfield 
manufacturing environment, composed of dozens 
of distributed and heterogeneous (legacy) systems, 
implemented in different technologies with different 
levels of technological generations and obsolescence. 
Yet, most of them were developed still inspired by 
classical industry organization models, quite hierar-
chical, such as the five-layer reference model ISA-
951. Therefore, depending on the existing industry’s 
legacy systems, the softbot’s implementation model 
should rely on them to support its required function-
alities. For example, a given softbot does not dupli-
cate functionalities that are already deployed in some 
legacy systems, like in IoT devices (ISA-95 Layer 0), 
PLCs (ISA-95 Layer 1), supervisory systems (ISA-95 
Layer 2), MES - Manufacturing Execution System 
(ISA-95 Layer 3), or ERP (ISA-95 Layer 4). Instead, 
softbots will make use of their systems’ functional-
ities to take care of users’ requests or for proactive 
actions. This means, for instance, and back to the 
RAMI 4.0 model, that the softbot itself would sup-
port but not necessarily internally implement the lay-
ers of communication, integration, and information, 

Figure 1. Reference Architectural Model Industrie 4.0 (RAMI 4.0) (Adapted from [87])

1  https://isa95.com/isa-95-enterprise-control-systems/



72 Rabelo et al.

International Journal of Industrial Engineering and Management Vol 14 No 1 (2023)

as they would be already done internally by those 
systems. Therefore, the softbot would just have to 
interoperate with them by invoking their interfaces 
(API) according to the orchestration and choreogra-
phy associated with the business process (related to 
the users’ requests or automatic/proactive actions) to 
be executed by the softbot. 

An important element in RAMI 4.0 is the Asset 
Administration Shell (AAS) concept (see Figure 1 
left side). It acts as a computing wrapper deployed 
on top of a physical asset, delimitating its functional 
responsibility. The AAS turns a given asset into a ser-
vice provider, allowing it to be flexibly connected and 
dynamically bound to any business process within a 
service-oriented global environment. Softbots 4.0 can 
act as an intelligent entity of the AAS (smart AAS), 
providing human interfacing, reasoning, and task ex-
ecution capabilities to the AAS given that the original 
AAS model is represented as a services integration/
interoperation wrapper and a resource’s description.

Of particular relevance for this research work is 
the Integration Layer, responsible for the provision-
ing of information about the different networked 
production assets (viz. product, field device, control 
device, station, work centres), or even about more ab-
stract entities (as an enterprise and the business net-
works it is engaged). In this way, information is avail-
able for computer and human processing through 
Machine-to-Machine (M2M) communications (via 
an integration module) and Human-Machine Inter-
faces (HMIs) (via diverse types of HMI available in 
the presentation layer). This is illustrated on the right 
side of Figure 1. Hence, it is important to recognize 
the need for smart HMIs in the emerging IoTSP, 
given the increasing number of applications that op-
erators must monitor across a smart manufacturing 
environment [88, 89].

Smart HMIs include built-in integration tools for 
quick connections to a variety of servers, controllers, 
and devices, improving operators’ productivity when 
interacting with smart machines and robots, comput-
ers, databases, and other information systems in a 
smart factory [88, 89].

In this paper, Softbots 4.0 are highlighted as smart 
HMIs, allowing operators and different networked 
production assets to interact with each other more 
intuitively to speed up decision-making and action-
taking, and hence to help to excel production man-
agement in a social CPS.

A Softbot 4.0 can also turn a production entity 
into a smart one. Diverse works propose layered ar-

chitectures to implement such entities. In general, 
they divide it into macro layers: physical layer (when 
this entity is associated with a physical manufactur-
ing element, such as a machine, a component, etc.); 
sensing layer (responsible for data acquisition and 
low-level interoperability); communication and inte-
gration layer (responsible for data synthesis, and the 
interaction with other systems and production enti-
ties); and cognition layer (responsible to plan, interact 
with and/or assist humans in analyses and decision-
making) [90].

Softbots can also be framed into IIRA (The In-
dustrial Internet of Things Reference Architecture)2. 
Among other architectural aspects, IIRA sees an 
IIoT-based system (in a broad sense) under four so-
called viewpoints: business, usage, functional, and 
implementation, that should be instantiated for given 
application domains. The business viewpoint attends 
to the concerns of the identification of stakeholders 
and their business objectives in establishing an IIoT 
system (e.g., a manufacturing softbot) in its business 
context. The usage viewpoint addresses the concerns 
of the sequences of activities involving interactions 
with humans or other systems to deliver the intended 
functionalities. The functional viewpoint focuses on 
the functional components in an IIoT system, their 
structure and interrelation, the interfaces and inter-
actions between them, and the relation and inter-
actions of the system with external elements in the 
environment, to support the usages and activities of 
the overall system (a manufacturing softbot, in this 
case). The implementation viewpoint deals with the 
technologies needed to implement functional com-
ponents (functional viewpoint), their communication 
schemes and their lifecycle procedures.

4. Related Works

Few works have been found in the scientific litera-
ture applying softbots (or equivalent terms, as depict-
ed in Section 3.3) to support workers in their activities 
of production management and shop floor control 
close to CPS in Industry 4.0 scenarios. This gap has 
been also detected in a survey on initiatives for the 
implementation of the Operator 4.0 concept [23].

In terms of general approaches for such imple-
mentation, holonic systems [76] and multi-agent sys-
tems [82] seem to be the most used ones. Thanks 
to the advances in Artificial Intelligence, Machine 
Learning, and related tools, as well as in other en-

2  https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
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abling technologies, such as the Industrial Internet 
of Things, Big Data, Digital Twins, and Cloud Com-
puting, such old approaches have been revisited and 
have become technologically more feasible as means 
to implement some Industry 4.0 principles, as deci-
sion decentralization, and systems and CPS intelli-
gence and autonomy [86]. Several theoretical works 
(e.g., [17, 76, 82, 83, 91, 92]) have adopted these ap-
proaches, where agents/holons are somehow virtual-
ized to represent different types of industrial entities 
to: (i) be able to reason about the current shop floor 
status and to establish conversations with workers; (ii) 
autonomously provide real-time information to other 
systems; (iii) dynamically and opportunistically create 
holon squads to solve problems collaboratively; and 
(iv) solve problems via e.g., negotiation strategies.

Other examples of works that can be highlighted:

• Schwartz et al. [24] proposed a concept of 
“hybrid teams” to face the increasing need for 
higher-level collaboration between humans, in-
dustrial equipment, and software. Several po-
tential hypothetical cases were described and 
the requirements for a generic architecture 
were presented.

• Although more directed to software develop-
ment, Erlenhov et al. [93] and Matthies et al. 
[94] have proposed frameworks where soft-
ware bots could help users in the management 
of agile projects, aiding project managers to 
check developers’ performance (but that could 
be shop floor operators, for example) as well 
as to proactively check project’s milestones and 
deviations in the planned activities, including 
informing and supporting teamwork.

• May et al. [95] proposed a taxonomy iden-
tifying the many aspects to be considered for 
implementing worker-centric systems in manu-
facturing. 

• Nazarenko & Camarinha-Matos [96] elicited 
general requirements for collaboration be-
tween CPSs, which included the so-called “hu-
man orientation”. 

• Kar and Haldar [74] identified various scenari-
os for conversational software bots in IIoT en-
vironments, proposing a cloud-based architec-
ture for multi-channel softbots. The goal was to 
handle communication between humans and 
IIoT environments, easing device configura-
tion as well as supporting users in higher-level 
conversations about their status and data.

• Caldarola et al. [97] proposed an architecture 
for a CPS with one chatbot, focusing on the 

problem of different semantic interpretations 
to better understand users’ requests.

• Kassner et al. [98] proposed a general archi-
tecture for what they called a “social factory”, 
implementing a software bot to interact with 
one single machine. The goal was to illustrate 
the potential benefits of this in a smart factory 
environment. In this line, Singh & Tretten [90] 
devised an architecture for what they called a 
“Human-Cyber-Physical System”, identifying 
the different roles associated with humans, the 
machines, and the machines’ cyber parts.

• Dersingh et al. [99] developed a chatbot to 
monitor and record issues of a production line 
and to notify corresponding workers for appro-
priate actions.

• Longo et al. [100] implemented a framework 
to support the interaction of humans with 
physical equipment and their digital twins in 
a cyber-physical environment. The novelty of 
this work mainly relies on making users inter-
act with a softbot that represents a virtual entity 
(i.e., a digital twin). Longo et al. [69] have fur-
ther developed a voice-enabled assistant (using 
smartphones) to help the “Operator 4.0” in 
asking for information from a single CPS.

• Chen et al. [101] developed an engine that cap-
tures the production plan and transforms and 
adapts it to the skills and experience of the in-
volved users to improve factory effectiveness 
and human satisfaction.

• Gnewuch et al. [102] made some experiments 
to evaluate the effects of how pre-designed 
delays in the conversation between users and 
systems could positively shape users’ percep-
tions during conversations with software bots. 
They realized that delays in some situations 
can create a more human-like environment, 
and hence a better symbiosis between humans 
and chatbots.

• Zajec et al. [103] have developed an assistant 
with machine learning capabilities applied to 
help humans in inventory forecasting deci-
sions. After the algorithm was trained for a long 
time, decision-makers are assisted in their anal-
yses and final decisions towards turning more 
accurate the activities of production planning 
and order fulfilment. To an equivalent extent, 
Bousdekis et al. [104] developed an assistant to 
address the end-of-line quality control to adopt 
a predictive quality strategy that links the qual-
ity control of the finished product with the de-
sign stage and the shop floor.
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• COALA project [105] is a European Com-
mission-funded project under which a human-
centered Digital Intelligent Assistant is being 
developed for education and training purposes 
with the aim of better supporting operative situ-
ations characterized by manufacturing work-
ers’ cognitive load, time pressure, and little or 
zero tolerance for quality issues. Several papers 
from this project have been published by its 
partners. 

Despite the relevance of the outcomes and theo-
retical artefacts provided by all these works, to the 
best of our knowledge – except the work of Longo 
[69] – we could not find examples of implementa-
tions of using softbots (or equivalent) effectively inte-
grated into real physical CPS and that, based on the 
data got, could establish conversations with the so-
called Smarter Operator 4.0 to help him in his activi-
ties of production planning and shop floor control.

5. Case Studies

This section intends to present implementations 
of softbots to support the Smarter Operator 4.0 close 
to CPS. 

Given that identified gap in terms of implemen-
tation initiatives; that this paper’s authors have im-
plemented five different case scenarios of this; that 
Longo’s [69] work is equivalent to one of these cases 
(although not many details were given in his paper); 
and that the essential goal of this paper was not to 
compare the authors’ implementation with others, 
but rather to demonstrate the potentials of softbots 
technology when assisting the operator 4.0; this sec-
tion will be focused on presenting a compilation and 
summarized description of those five cases to further 
present a global analysis. The detailed explanation of 
each case (e.g., in terms of softbot derivation, mes-
sages modelling, systems integration, etc.) can be 
seen by accessing the respective publications, whose 
references are mentioned when the description of 
each case.

The five softbot cases represent examples of pos-
sibilities of many scenarios where Softbots 4.0 can 
be used in diverse usual situations in an industry in 
terms of production management and shop floor 
control, trying to cover the three softbots’ modes: act-
ing upon request, doing activities automatically, and 
do activities pro-actively.

They were mostly developed as proof-of-concept 
software prototypes. Although the implemented soft-

bots were deployed in real CPS, this was almost all 
done in a controlled environment, using the univer-
sity laboratory and (previously trained) engineering 
students to act as ‘managers’ or ‘operators’. This im-
plied that the integration of the softbots with other 
systems (like the ERP and MES) was very simplified, 
using the simple ones existing in the lab. Yet, the pro-
duction and shop floor control scenarios were also 
simplified as the goal of each case was not to show the 
execution of extensive business processes that might 
involve plenty of situations and variations of human 
interactions for each case.

Softbots 4.0 involves not only the connection with 
people but with industrial machines as well. This 
means communicating and acting directly on physical 
and sometimes critical equipment and infrastructures, 
hence becoming a potentially big security problem in 
the case the softbot is somehow hacked. Despite this, 
and considering the essential goal of this paper, this 
important and complex issue was not supported at all 
in the implemented prototypes, which only provided 
the basic security resources offered by the adopted 
implementation tools and technologies. Many works 
in the literature propose techniques to support cyber-
security in critical systems, as in [106], as well as some 
ones that depict the most relevant types of cybersecu-
rity problems in chatbots, as in [107].

The implementations used the ARISA NEST 
platform, an academic PaaS (Platform-as-a-Service) 
environment developed to derive and execute web-
based, scalable, open, and service-oriented softbots 
for different application domains [67, 108].

The ARISA NEST has a Web Interface that al-
lows Designers to create and manage the life cycle of 
multiple bots for multiple users/companies. The de-
rived bot has a Knowledge Base, which is composed 
of contexts and dialogues, beliefs, scripts, and behav-
ioural algorithms. Once derived, Users can interact 
with the bot via chat (e.g., telegram, webchat, mobile 
app, etc.) using natural language, by typing or voicing. 
Depending on the user’s request or preconfigured 
action to be executed, this is internally handled either 
by the behaviour executor or by directly invoking 
web services to trigger the required actions, helped by 
an internal orchestrator engine. All the conversations 
between users and the softbot are modelled in con-
texts. A Context is a set of dialogues with a common 
subject. A bot’s conversation domain can have many 
contexts, viewed as a tree, having a root as the starting 
point, and internally organized as a graph.

ARISA NEST supports three types of behaviour 
modes in its communication with end-users: (i) reac-
tive – when the softbot acts in response to direct us-
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ers’ requests via chatting (e.g., to ask about more de-
tailed information from a given machine); (ii) planned 
– when the softbot acts in response to predefined 
scheduled tasks (of different types and complexities), 
bringing their results to users after their execution 
(e.g., to generate consolidated performance reports 
weekly); and (iii) pro-active – when the softbot per-
forms predefined tasks autonomously on behalf of 
users or of some system it represents, bringing their 
results to users if needed (e.g., to continuously check-
ing communication problems between data collec-
tors and MES system and to promptly take measures 
to solve them, or sending warnings and alarms).

It has not been found in the literature a formal 
and comprehensive reference framework to evaluate 
softbots, which, in theory, should provide resources 
to evaluate all their properties (see Section 3.2) and 
at several dimensions. Some works have proposed 
some ad-hoc perspectives of analyses, more related to 
what they wanted to evaluate. For example, in [109], 
authors used the trustworthiness of the system, the 
usability of the digital assistant, the cognitive work-
load of its users, and the overall business benefits 
for the corporation to evaluate voice-enabled digital 
assistants. In [85], the authors proposed evaluating 
the digital assistant based on its general execution ef-
ficiency, the quality of the predictions, the transfer-
ability of dialogues to easy analytics, and the effects of 
the provided analytics in the business.

In the case of the work presented in this paper, re-
garding its essential goal of demonstrating the poten-
tial of Softbots 4.0 approach to help the “Operator 
4.0” in its daily activities of production management 
and shop floor control close to industrial CPS, the 
indicators were not much formal. A more qualitative 
approach was applied, focusing on how much the 
softbot could assist people in executing tasks on de-
mand, automatically and proactively, using different 
levels of fluid interaction and intelligence. In most 
cases, students and professors were used for evaluat-

ing the results; only in two cases real operators in real 
companies could be considered.

5.1. Operator 4.0 + Softbot Close to One 
Machine

This first case refers to a single softbot that helps 
machine operators in some tasks via a high-level in-
teraction. In very general terms, this Case can be con-
sidered equivalent to the one implemented by Longo 
et al. [69]. Three scenarios were supported: (i) the 
softbot monitors a production process and keeps 
the Operator 4.0 informed about its execution; (ii) 
the Operator 4.0 interacts with the softbot via text or 
voice in the mobile phone asking about production 
issues; and (iii) the softbot publishes a report with a 
summary of its daily activities.

This case corresponds to a reimplementation of 
previous work [10]. It was implemented in the Festo 
MPS didactic plant existing in our research lab (par-
tially shown in Figure 2). This plant is composed of 
six machines (stations) that work in sequence, as fol-
lows. A distribution station receives parts from a buf-
fer according to the current production plan. Some 
initial tests are made on them. They are further re-
ceived by the testing station, which checks several as-
pects to guarantee assembly conformity. In the case 
the part is not OK, it is put out of the production 
line; otherwise, it is separated/sorted according to its 
size, weight, colour, and material by the separating 
station. The pick-&-place station starts the first phase 
of assembling and picking parts according to the or-
ders’ due date indicated in the production plan. The 
muscle press station completes the assembling pro-
cess by joining different parts to compose the final 
product. Finally, the sorting station takes the different 
final products and sorts them according to their types 
for further packing and delivery.

Each station is equipped with a PLC Siemens S7-
1200 full DC and a set of sensors and actuators, hav-

Figure 2. Festo MPS Didactic Plant



76 Rabelo et al.

International Journal of Industrial Engineering and Management Vol 14 No 1 (2023)

ing a link to the outside via a Profinet network and 
OPC protocol. It is possible to access their data by 
reading the many tags they instantiate during the as-
sembly. This is done via the TIA (Totally Integrated 
Automation) Portal, from Siemens too, which acts 
as a general management environment, providing 
several functionalities, like CLP programming and 
plant supervision (SCADA). Client applications (e.g., 
a softbot) should communicate with the TIA Portal 
(and so with the plant) via OPC.

Scenario 1

In the first scenario, the business process (BP) as-
sociated with the case was designed to monitor the 
number of parts that are initially available and the 
ones necessary to start the production considering the 
demand expressed in the production plan. In the test-
ed scenario, there must be a minimum of 40 parts of 
type ‘10001’ in the buffer to take care of the order id 
‘128’. There is a sensor in the distribution station that 
counts this, which is received by the softbot via OPC. 
In this case, it was detected that 27 more parts are 
still required (see Figure 3). Given that, a request for 
a quotation should be immediately and automatically 
triggered and executed by the softbot close to that 
part’s supplier (called ‘UFSC Ltda’), previously reg-
istered in the e-procurement system. This transaction 
would cost $55.00 and has ‘800’ as its id quotation.

However, this supplier currently does not have the 
requested number of parts. The softbot then decides 
to look for another supplier, choosing the second in 
the list, ‘ITESM Ltd.’. It sends another request for 
quotation (it uses an API to call the [hypothetical] 
ITESM’s ERP function responsible for that), receiv-
ing the price ($68.00) and the expected delivery date 
(10 Jul 2020) as a result. Following the company’s 
governance model, which should also be reflected in 
the softbot’s autonomy model, Mr. Zambiasi should 
authorize this transaction. Once authorized, the soft-

bot does the purchase and notifies Mr. Zambiasi 
about it, informing him that 27 parts have been pur-
chased, via order ‘801’. The generated conversation 
between the operator and the softbot has happened 
in the softbot’s desktop interface environment, using 
the Google Gtalk tool, as shown in Figure 3.

Scenario 2

In the second scenario, the operator, via his mo-
bile phone, asks the softbot if there is some pending 
order regarding the production plan in place. The 
softbot answers that there are two orders of id ‘102’ 
and ‘226’, and their respective planned starting date. 
Later, the operator wants to check if Order ‘226’ has 
been finished, and the softbot answers that it is de-
layed and shows the new planned starting date. This 
has been implemented using the Twitter tool, and it 
is shown in Figure 4.

Scenario 3

In the third scenario, a summarized report is 
generated by the softbot and sent out to the opera-
tor (and/or managers) at the end of the day, for final 
checking and further storing for future auditing pur-
poses. The softbot publishes it in one of its user in-
terfaces and has used an open-source blog tool. This 
is shown in Figure 5.

The softbot could perform the actions as planned 
and could assist the human operator in some tasks, 
both in terms of interacting with him when needed 
and by automating task execution. These were the 
general indicators used to evaluate this prototype [14].

Figure 3. Softbot Main Dialog Interface [10]

Figure 4. Operator 4.0 Mobile Phone
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5.2. Operator 4.0 + Softbot Close to Several 
Machines

This second case refers to collaborative softbots 
interacting with the operator or with other softbots. 
Five scenarios were implemented: (i) the Operator 
4.0 asking the softbot about current deviations in the 
production plan considering the number of final as-
sembled products; (ii) the softbot helping the Opera-
tor 4.0 in checking possibilities of rescheduling due 
to delays in the production plan; (iii) two softbots, 
pick-&-place softbot and distribution softbot, interact 
with each other to see how to overcome current stock 
issues after a new production schedule; (iv) softbots, 
acting as a digital andon system, warn operators via 
an SMS message about production problems; and 
(v) softbots proactively do a production follow-up to 
determine if the production plan is being followed as 
scheduled.

This case has been detailed and described in 
previous work (i.e., [14]) and was developed based 
on the before-mentioned Festo MPS didactic plant. 
Nevertheless, there are three basic differences to the 
previous case: each station is no longer a “simple” 
machine, but it is wrapped with a ‘management & 
communication’ layer transforming it into a Cyber-
Physical System (CPS); there is one softbot per CPS, 
creating a team of independent but collaborative 
softbots; and there is more than one operator – Op-
erator #1 and Operator #2 – who can also interact 
to each other, simulating the One Worker Multiple 
Machines (OWMM) philosophy.

Scenario 1

The Operator #1 asks, via voice recognition, the 
separating station CPS’s softbot called ‘Roy’ (which 
is a name similar to a human friend instead of a for-

mal name for a computer system) about current de-
viations in the production plan according to the pro-
duction schedule considering the number of final 
assembled products – add up by a counting sensor 
in the sorting station – due to some problems oc-
curred during the work shift (see Figure 6a). ‘Devia-
tion’ word and ‘today’ are the keywords the softbot is 
prepared to hear, which in turn is handled by one of 
the CPS’s manager services (see Figure 6b) responsi-
ble for calculating the current production deviations 
based on the production schedule. The softbot ‘Roy’ 
understands that ‘today’ means verifying what is the 
day ‘today’ production schedule and takes this date 
as the target to identify the production deviations. 
The separating station CPS’s softbot reacts to this 
voice request, accesses the MES’s database directly 
(without the need to broadcast any messages to other 
CPSs to try to get this information as it is stored in 
the MES or ERP system) and sends the informa-
tion back to the Operator #1, notifying him about 
the production deviations in terms of expected vs. 
actual assembled products amount. Figure 6c shows 
an excerpt of the coded script to perform this query-
ing action to the MES system about production plan 
deviations [14].

Scenario 2

Given the delays in the production plan (as fewer 
products have been assembled according to the pro-
duction schedule), the Operator #1 asks, by typing 
in the keyboard of his/her smartphone, to the pick-
&-place station’s softbot if it is possible to ‘anticipate’ 
the production of Bottle A without delaying Bottle 
B’s due date (see Figure 11a). Some typed words are 
taken by the softbot as keywords besides the fact that 
the Operator #1 knows that such products’ names 
are valid in the ERP database system. 

Figure 5. Softbot Daily Report [10]

Figure 6. Softbot Querying the MES System about Production Plan Deviations [14]
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The softbot reacts to this text request by execut-
ing the proper CPS manager service, responsible for 
interacting with the ERP’s scheduler module via its 
API (see Figures 7b and 7c). The scheduler can re-
turn two parameters after some calculations to the 
Operator #1: ‘NO’, meaning this is not possible ac-
cording to the current production plan schedule; or 
‘YES’ and ‘date&time’ value, meaning it is possible, 
and that the activity linked to ‘Bottle A’ at the pick-&-
place station should start on the given date and time 
to reschedule the production of ‘Bottle A’ without 
affecting the production of ‘Bottle B’. With this in-
formation, ‘YES’ or ‘NO’, at hand (see Figures 7d 
and 7e), the Operator #1 evaluates the situation and, 
given the autonomy philosophy in Industry 4.0 (i.e., 
human-in-the-loop), (s)he takes the final decision. If 
(s)he agrees on ‘YES’, then the softbot invokes again 
the ERP’s scheduler module to update the produc-
tion plan, which in turn updates the dispatcher’s 
plan. The dispatcher updates the pick-&-place’s PLC 
program so that the new production sequence can be 
performed. The operator also can access the ERP 
database, stored in a cloud, to have a broader vision 
of the production via e.g., Gantt charts and perfor-
mance indicators dashboards [14].

Scenario 3

During the execution of the new production 
schedule (see Scenario 2), the pick-&-place station 
softbot asks the distribution station softbot if there 
are enough bottle caps in stock to accomplish the 
new production plan for ‘Bottle A’ according to its 
new schedule (see Figure 8a). The distribution sta-
tion’s softbot first asks Operator #2 (‘Rick’) about the 
available inventory of bottle caps via voice (or text). 
He answers, ‘I do not know’, and then the softbot 

proactively accesses the inventory information stored 
in the ERP system database (see Figure 8b). The dis-
tribution station softbot sends the number of bottle 
caps in stock (’50 bottle caps’) to the pick-&-place 
station softbot, which verifies that this is not enough 
stock and notifies the Operator #2 (see Figure 8c) 
about it. In parallel, the softbot sends an e-mail to 
the purchasing department to warn it about that too, 
always keeping “humans-in-the-loop”. This proac-
tive functionality demonstrates that interactions in an 
Industry 4.0 environment can be non-hierarchical, 
crossing many different company departments [14].

Scenario 4

The testing station’s softbot permanently monitors 
the execution status of this station in the MES data-
base following a detect-&-repair policy for supporting 
a total productive maintenance strategy. This softbot 
seeks to ensure that the testing station is always avail-
able for use according to the production schedule. 

In the case of detecting that the station is currently 
stopped due to whatever problem, for example, the 
bottle’s cap has been placed upside down as detected 
by a digital poka-yoke sensor. The softbot sends a 
message, via the OPC, to the testing station’s PLC 
to go into alarm as well as sends an SMS message 
to the Operators #1 and #2’s smartphones, acting as 
part of a digital andon system (see Figure 9a). Op-
erator #1 was nearer to the station, confirms visually 
that the problem exists, and asks, by typing in the 
testing station’s softbot interface, ‘How to solve the 
problem?’ (see Figure 9b). The softbot accesses the 
company’s intranet and shows him/her the exact part 
of the machine troubleshooting manual that explains 
the procedure(s) to solve the problem detected (see 
Figure 9c) [14].

Figure 6. Softbot Querying the MES System about Production Plan Deviations [14]
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Scenario 5

As part of their routines, all softbots proactively 
show a real-time log on the Festo central computer 
with the list of the orders in place, their due date, 

and if they are on time or delayed supporting produc-
tion control at the shop floor. This information is ob-
tained from the MES database, which has all data in 
English. However, the softbot realizes that the opera-
tor present in the work shift is Brazilian, so using its 

Figure 7. Softbot Querying the ERP System about the Possibility of a Production Rescheduling [14]

Figure 8. Softbot Querying the ERP System about Raw Materials Inventory [14]

Figure 9. Softbot Querying the Station’s Troubleshooting Manual [14]
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interpreter capabilities (i.e., language translation), it 
automatically translates the data to Portuguese to turn 
the communication more pleasant to the operator 
and also reduce potential human error due to some 
interpretation problem. For example: “No horário” 
means ‘in time’; “atrasado” means ‘delayed’; and 
“planejado” means ‘planned’ (see Figure 10) [14]. 

This softbot feature as an ‘interpreter’ is quite 
relevant to support an international workforce, not 
only in production planning and control activities but 
also in problem-solving ones when, for example, the 
troubleshooting manual for a machine is written in a 
different language (see Scenario 4). 

Scenarios Summary

The softbots could execute the actions as planned. 
They have assisted operators in some tasks, they have 
interacted with them, they have performed some 
tasks automatically, and they have interacted with 
other softbots when necessary.

Some undergraduate engineering students (as ‘op-
erators’) were trained in advance to use the softbots 
and asked about it after the experiments. Based on 
their answers, they believe that softbots can be more 
effective in doing many and sometimes difficult tasks 
automatically as well as creating a more user-friendly 
interaction environment when they wanted to get 
some production information. This includes access 
to information they barely would know how to get (or 
not so easily or promptly) from the MES system and 
other CPS.

5.3. Operator 4.0 + Softbot Embracing an 
Entire Shop Floor for OEE analyses and 
Maturity level

This case aimed to present an approach to how 
softbots can help managers in their daily management 
of production. It corresponds to a partial reimplemen-
tation of previous work [59], in cooperation with Har-
bor3, one of the leading software providers of MES 
systems in Brazil. This case/example corresponds to 
a real scenario, based on real data.

The main motivation of this case relied on the 
fact that most SMEs are very limited to handle the 
so much information got from their shop floors and 
exposed in their MES’ production management inter-
faces, to reason about, and respond appropriately to 
solve the problems. One of the main underlying prob-
lems is that these actions should be carried out during 
the working shift, which creates a very stressful ambi-
ent and this frequently leads to incorrect actions. An-
other goal refers to dealing with the usual lack of good 
management background from some SME managers, 
and with the fact that most of them are not used to 
running their businesses on a data-driven basis.

A softbot was created to work as a module of a 
cloud-based MES system (called LiveMES), which 
works on the real-time data got from the shop floor 
of Harbor’s clients to help production managers in 
some of their daily activities. The softbot is called Livia 
(LiveMES + intelligent analysis). To this approach, we 
called Production Management as-a-Service (PMaaS).

Figure 10. Softbot Translates to a Different Language the Data [14]

3  https://www.harbor.com.br/
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Besides being prepared to answer usual questions 
about the production, machines, etc., Livia’s essential 
goals are to assist managers in: (i) being aware of how 
trustworthy the data grabbed is from the shop floor 
(for more confident and accurate decision-making); 
and (ii) their analyses upon such data and the final 
decision making.

Maturity models were the core theoretical foun-
dation used to approach the first goal. Maturity is a 
measurement of the ability of an organization to con-
tinuously improve some of its capabilities. Maturity is 
typically expressed in levels. The higher the maturity 
the better the company [110]. 

Four maturity levels were defined: Level 1, Re-
sources, assesses if the shop floor’s supporting in-
strumentations are properly running and measuring 
the expected information. Level 2, Rigor, assesses 
if the set of expected assets and production entities 
are properly registered and communicating with the 
MES system. Level 3, Routine, assesses if the set of 
predefined management and supervision actions and 
processes have been executed. The highest level, 4, 
Run, assesses if a high-level set of production data is 
being used to manage the production. The calculated 
assessment level is displayed in a Radar-like interface. 
This creates the so-called ‘RA-RE-RI-RO-RU’ mea-
surement cycle of the company’s maturity evolution 
[59].

Business Analytics was used to approach the sec-
ond goal. It refers to methods and techniques used to 
measure an organization’s performance by exploring 
its data to gain insight and drive business [111]. Mak-
ing use of those three softbots’ behaviours and via 
interacting with Livia, four types of business analytics 
are provided: description, diagnostic, prediction, and 
prescription. They can be triggered either sequen-
tially or independently from each other, depending 
on the situation in place. For example, when a given 
problem happens, it is identified (description) and 
its cause(s) named (diagnostics). Possibilities to solve 
it can be generated and evaluated (prediction), and 
straightforward measure(s) are suggested (prescrip-
tion).

A broader view of the main steps related to one 
scenario of Livia is presented below4. In the current 
implementation, Livia is always ready to attend to 
users’ requests (in this case, the manager called Mr. 
Abner). The system has been designed to leave the 
interaction with users the most colloquial as possible. 
Abner wants to know about the company’s maturity 
level and Livia asks him about the desired timeframe 
or focus of analysis (see Figure 11a).

In this example, Abner wants to focus his analy-
sis on the Routine level to check data integrity and 
consistency. This is important to evaluate because: 
sometimes operators forget to register some informa-

Figure 11. Chatting between Livia and the Operator/Manager

4  The texts in the interfaces were translated ipsis litteris from Portuguese to English for the purpose of this paper.
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tion or add them incorrectly; the grabbed data is an 
outlier, or the monitored production rates of some 
work centres are higher than their standard rates. 
Livia does that automatically, computing bunches of 
data in a fast way, and informing Abner about it right 
after that.

Figure 9a also shows the descriptive analytics part. 
It was observed that, in general, only 0.67% of the 
collected data has certain inconsistencies. However, 
focusing on more specific and relevant information, 
Livia observed an “inconsistency” between the actual 
and expected work centres’ runtime state (9.76% and 
4.38%). On the other hand, since the degree of dis-
crepancy is lower than 10% (previously configured), 
Abner prefers to go on, now aiming at performing 
the diagnostics analytics. Livia shows the calculated 
machines’ OEE (Overall Equipment Effectiveness) 
to Abner, complemented with reference metrics (see 
Figure 11a). Livia realizes that the main cause for the 
low mean OEE (70.63%) was several unforeseen in-
terruptions in the machines.

Abner can request more information about any as-
pect he wants. In the example, considering he is a very 
experienced manager, he prefers to check what the 
system means by ‘OEE’ before continuing his analysis 
(see Figure 11b). An initial short answer is given, with 
the possibility to have a more comprehensive descrip-
tion of the OEE, which is provided via a trustworthy 
Internet URL.

Having the OEE data and now sure about the 
OEE meaning, Abner asks about the worst OEE 
days. In theory, Livia could have an internal service 
functionality implemented to handle such requests. 
However, as this is provided by the LiveMES system, 
Livia just indicates the URL Abner can use to get that. 
To have a broader view of the machines’ OEE, Abner 

wishes to see that in a graphical chart way (see Figure 
11b). The current ARISA implementation does not 
support internal graphical representations. An Inter-
net link is then generated to have access to the created 
file with the desired chart, and it can be visualized (see 
Figure 12).

The next step refers to predictive analytics. For 
example, Abner could be interested in checking, via 
Livia, the OEE prediction for the next working shift 
before deciding what to do at this moment to solve the 
current problem of low OEE. This feature, however, 
is still being implemented, in the form of an (internal) 
invocation to an AI-based prediction tool’s API to cal-
culate that.

In terms of prescriptive analytics, the last step. 
Considering the calculated company’s maturity for 
the Routine level (3.2) and what Livia has mapped in 
its knowledge base (which is based on good practices), 
it does not have a solution to immediately solve the 
OEE problem. Livia then suggests a short/medium-
term measure to handle numerous stops in the work 
centres, which is reinforcing training activities close to 
the operators. Finally, Abner requests an executive 
production report to be sent out to his e-mail (see Fig-
ure 11c).

As the last step of the global RA-RE-RI-RO-RU 
maturity cycle of the given company, a Radar-like 
chart is generated (see Figure 13), providing a broader 
analysis perspective to managers.

Besides the more user-friendly, reliable, integrat-
ed, and less stressful ambient for better, agile deci-
sions way of managing the production, Livia softbot 
has brought some important benefits. On average, a 
rough weekly manual analysis (by managers) of the 
most important work centres (normally four) of each 
company took 2.5 hours. After this implementation, 

Figure 12. General OEE Dashboard [59]
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it takes from 7 to 16 seconds for doing a complete 
analysis of all production issues for all work centres 
(it spends about 15 seconds to completely evaluate 2 
months of operation of 20 work centres). It is to be 
highlighted that this assessment only refers to the ma-
turity analysis. Many other actions are performed by 
softbot, automatically, proactively, and more accurate-
ly in the background on behalf of the managers [22].

The goal of this case is to show that softbots can 
do complex activities, no matter the underlying ap-
proaches used by a given company (maturity models, 
reasoning processes’ algorithms, etc.).

5.4. Operator 4.0 + Softbot Integrated into 
Digital Twins

This case addresses the use of softbots as an inter-
mediate actor between a Digital Twin (DT) and pro-
duction managers. This does not aim to replace the 
native DT’s user interface, but rather add a comple-
mentary and more symbiotic interaction layer towards 
leveraging the Cognitive Operator 4.0 [112].

This implementation [112] was made on top of 
previous work, described in Case 1 (see Section 5.1). 
In this previous case, a softbot was developed to al-
low direct interaction between operators and a set of 
CPSs. A DT to mirror these CPSs was further devel-
oped allowing managers to have access to a sort of 
information via the DT’s graphical user interface and 
the provided production dashboards.

The motivation to implement this case refers that, 
in a smart shop floor, although a DT can show produc-
tion data via dashboards, many issues arose once the 
DT had been deployed, such as: (i) the data showed 
in a DT’s dashboard is predefined and designed for 
a generic user, including the way it interacts with its 

users; (ii) the usual lack of integration between a DT 
and other enterprise systems makes users go through 
other information systems’ GUIs (e.g., ERP or MEs) 
to pick the required information and to ‘mentally’ 
reason about it outside of the DT’s environment; (iii) 
the human limitation to follow (with the eyes) many 
‘things’ simultaneously in a DT visualization or CPS 
execution; and (iv) the many ‘hidden information’ in a 
DT visualization because of poor GUI design; among 
other issues.

In terms of DT, one of its parts is deployed at a 
local level. A wrapper was implemented to grab infor-
mation from the CPS’s stations in real-time and store 
them in the DT’s database. There is a total of 135 
PLCs’ tags that indicate several statuses of the stations 
during their operation. The communication between 
the wrapper and the TIA Portal (see Section 5.1) is 
done via the OPC-DA protocol.

On the remote side, a DT has been developed 
(in Python) using the Plant Simulation (PS) software, 
from Siemens. The real-time visualization of the CPS 
operation is done via permanent access to the DT’s 
database using the OPC-UA protocol. It can be ac-
cessed via its Python/COM API in the same way as its 
internal database. On the left side of the figure, it can 
be shown the DT environment with a partial view of 
the CPS in the background. The PC on the right side 
has the DT wrapper/OPC server. The DT appears 
on the left side, with two screens.

The developed softbot is a client application of 
the DT: the “DT softbot”. It can access both other 
information that is not handled within the DT envi-
ronment (e.g., the ERP) and the ones dealt with by 
the DT itself via its API. The so-called ‘local softbot’ 
corresponds to Case 5.1.

At this level, the operator: (i) can be provided with 

Figure 13. The RA-RE-RI-RO-RU Maturity Assessment [59]
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past information (e.g., what has been produced, via 
accessing the Plant Simulation and/or the DT data-
bases); (ii) can visualize current information (e.g., what 
is being produced, the machines in operation, bottle-
necks formation, etc.); (iii) can have access to related 
information from other systems; (iv) can monitor and 
take care of the CPS execution; and (v) can make 
some (current and future) analytics (e.g., prediction) 
based on some data and performance indicators.

Scenario 1

In this scenario, the user checks the DT’s ana-
lytics module and observes that the Distribution sta-
tion’s OEE (Overall Equipment Effectiveness) is too 
unstable. He realizes that some production orders 
will be delayed if this continues as the DT is predict-
ing, but he does not know either which orders might 
be affected by that (this information is handled by 
the MES system) or the respective customers’ names 
(this information is handled by the ERP system) so 
that he could warn both customers and the compa-
ny’s CRM area in advance.

As the DT does not have all the required infor-
mation, this request is got by the softbot, which “re-
acts” to attend to it. The message is interpreted by 
the softbot (based on predefined keywords), and it 
is decomposed into “subtasks” (one for each cor-
rect subsystem – the MES and ERP in this case - that 
should be accessed via calling their APIs to get the 
information), and each subtask is executed (within/
by the softbot) (see Figure 15).

Scenario 2

In this case, there is no user request. The softbot 
just executes the tasks that have been previously con-

figured by the user on his behalf. 
In this scenario, the softbot should automatically 

generate the utilization level of the Distribution and 
Testing stations at the end of each working shift for 
general analyses by users. As the ARISA NEST does 
not support internal graphical elements in its GUI, it 
does it calling and interoperating with the Plant Simu-
lation’s API to see the utilization level (see Figure 16).

Scenario 3

In this case, there is not a user request either. 
However, the pro-active mode relates to the possible 
autonomy level a softbot can have. For example, a 
softbot could always warn the user (e.g., sending him 
a message or getting into alarm) and order a given 
machine (the Distribution station, for example) to be 
turned off when its OEE gets lower than 20%. This 
value of 20% would be a result of a more sophisti-
cated algorithm that calculated this after processing a 
long OEE historical series also considering the com-
pany’s performance metrics.

In the developed prototype, that situation was 
just simulated. A simple algorithm (but it could be 
as complex as necessary) was implemented to act on 
the physical Distribution station, to be turned off in 
that OEE situation. Figure 17 zooms on the moment 
this situation occurs, also showing the change in the 
respective station’s tag (from ‘false’ - it was turned on, 
to ‘true’ - it is now turned off).

The possibility to turn a given station off by the 
user is also allowed by pressing the red button of 
each station directly on the DT’s graphical interface. 
However, this possibility poses some potential prob-
lems in terms of security and governance, as it means 
autonomously acting directly on physical equipment.

Figure 14. General Systems’ Architecture [113]
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Another example of this scenario is to support 
Scenario 1, i.e., instead of doing the user to follow 
the OEE performance of the Distribution station 

“manually” over time, the softbot can proactively and 
permanently check it and warn the user when this 
situation happens (see Figure 17).

Figure 15. Scenario 1: Reactive + Request Decomposition + Access to other Systems + Analytics

Figure 16. Scenario 2: Planned + Automatic Actions

Figure 17. Scenario 3: Pro-Active + Actuation on the Real System
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5.5. Operator 4.0 + Softbot Integrated into 
Augmented Reality

This case had the goal of showing scenarios where 
softbots and augmented reality (AR) are combined 
to create a working cognitive environment for the 
so-called “Resilient Operator 5.0” [113], extending 
the concept of the Augmented Operator 4.0 subtype 
[15]. In terms of domain problems, this work has fo-
cused on preventive maintenance, one of the most 
relevant issues being dealt with by industries in their 
chase for higher operational efficiency, zero error, 
and lower production costs [85]. The importance of 
maintenance operators being assisted by such tech-
nologies relies on increasing complexity in their daily 
activities, which includes: (i) continuous training as 
new products and versions are developed; (ii) manu-
al maintenance in several and very different types of 
equipment; (iii) planning activities and lots of infor-
mation to be constantly checked about each equip-
ment; and (iv) the different levels of expertise and 
operators experience, leading to longer maintenance 
times and more errors; among others [85].

Like Case 5.3, this one was implemented in a real 
company, although as a proof-of-concept project. 
This company is a medium-sized enterprise special-
ising in producing customized industrial automated 
assembling solutions for the food sector. A machine 
called “hamburger cartooning automated system” 
has been chosen for the tests, and it is responsible for 
receiving ready pieces of raw hamburgers and pack-
ing them into ready-to-deliver paper boxes. This case 
is detailed and explained in [114].

The prototype has been developed as a 3D AR 
model. The cartooning system’s parts were designed 
by the company in a CAD system (Solidworks). Af-
ter being converted into a proper AR format, co-
lours, and textures were added to the parts using the 
Blender software. The whole environment was im-

plemented within the Unity framework/tool. Vuforia 
software was used to get the modelled parts and to 
load them in the Unity environment. Once there, all 
the parts’ animations and choreographies, the design 
of buttons and heads-up displaying, functionalities 
programming (via scripts coded in C#), etc., could 
be implemented. This prototype was devised as an 
App to run on a smartphone, although other devices 
could be used, such as tablets and smart glasses.

Scenario 1

This proactive scenario refers to when the mainte-
nance operator leaves his office and goes to the shop 
floor for their daily routine after knowing which ma-
chines should be checked and maintained based on 
previous reports. However, during his normal walk, 
a given machine’s softbot (proactively) warns him that 
the machine has now an unexpected issue after re-
ceiving some information from sensors. This warning 
is sent out in an AR way (see Figure 18) when the 
softbot detects that the operator is close to the ma-
chine (this automatic ‘geographic detection’ has been 
so far implemented only in a simulated way).

Scenario 2

This reactive scenario refers to when the operator 
is doing the maintenance, starts an interaction with 
the softbot, and has some doubts about what or how 
to do it, whether experienced or beginner operators. 
A very simple ‘expert system’ inside the softbot is 
implemented, guiding the operator during the op-
eration. All interactions happen via the AR environ-
ment, running on the operator’s smartphone (see 
Figure 19 left side), and they can be made both via 
voice and text. In the case the operator wants more 
information about some specific aspect, an auxiliary 
interface pops up; in this case, the operator needs 
information about the ‘casquilho’ part and the expla-
nation is shown (see Figure 19 right side).

Figure 18. Scenario 1: Proactive Case – Warning about the Machine’s Situation
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Scenario 3

This planned scenario refers to when the opera-
tor is about to end his shift and wants to check the 
current status of the maintenance activities against 
what was planned. Reports are made available via the 
App and are automatically generated by the softbot, 
as planned. As ARISA NEST does not support per 
se graphical interfaces, the reports are stored and ac-
cessed at the derived softbot’s web area (see Figure 
20). In terms of functionality, this scenario is similar 
to some previous ones. The difference is that, in this 
case, this report is generated within the common AR 
environment, hence concentrating all the needed in-
formation in one place.

6. Conclusions

This paper has presented the results of a research 
whose essential goal was to evaluate the potential of 
softbots as a complementary technology to create a 
more symbiotic environment with the so-called Op-
erator 4.0, the Smart Operator type in more particu-
lar. In this context, the concept of Softbots 4.0 has 
been also introduced.

Five cases have been implemented, covering dif-
ferent scenarios involving manufacturing cyber-phys-
ical systems. Considering the usual issues managers 
and operators deal with in their daily activities, it 
could be observed, essentially via the implemented 
cases, that Softbots 4.0 is a powerful approach to 
help in improving smart production management 
and shop control. This could be attested based on 
the experimental results:

• Softbots help hide systems’ complexity, aiding 
managers in digging and finding the needed in-
formation over different and distributed silos 
of data (sometimes duplicated and stored in 
different sources) generated by different legacy 
systems.

• Such information access was faster and more 
trustworthy, as the softbot knows where to get 
the very right information and does that already 
handling interoperability problems. Besides 
that, it can help in granting only authorized 
people to request/have access to some type of 
information, hence helping companies in e.g., 
governance and GPDR compliance.

• Softbots could bring information in a more 
synthesized, structured, and compiled way, 

Figure 20. Scenario 3: Planned Case – Generating Maintenance Reports Automatically

Figure 19. Scenario 2: Reactive Case – Assisting the Operator during a Maintenance Activity
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sometimes composing a given data set (from 
the access to different systems) or making some 
previous calculations before finally sending/
showing it to users.

• The way users and softbots interact with each 
other is more similar to natural language 
speaking, helping to create a more symbiotic, 
“friendly”, social working environment. 

• Softbots could help users not only with their 
on-demand requests, but also with perform-
ing scheduled, complex, repetitive, and/or nu-
merous tasks automatically for or on behalf of 
them. Yet, they also do actions proactively, e.g., 
to permanently monitor some production as-
pects and to warn users about them when need-
ed. As a result, users can dedicate more time to 
activities that add more value to the company, 
and that indeed require more intelligence, cre-
ativity, and critical decision-making.

• Softbots can reason about data and help users 
in business/production analytics. They can also 
help users to understand what systems mean 
when suggesting, e.g., prescriptive actions.

One can note that some operations done via the 
softbot could be done by the user and/or provided by 
legacy systems, i.e., the softbot is not always the only 
way to access some data or to execute some tasks. 
However, it is important to remember that one of the 
softbot’s goals is to ease that or to hide some difficulty 
or complexity to do that by diverse people, also con-
solidating the needed information in one common 
user interface or environment.

The implemented cases have addressed only 
intra-organizational scenarios, with all the machines/
CPS belonging to the same organization, and only 
providing basic security mechanisms supported by 
the used tools (security is an extremely critical issue in 
the industrial softbots area, but it was out of the scope 
of this work). However, considering the potentialities 
of current ICT technologies, softbots from different 
industries can collaborate via messages and informa-
tion exchange towards helping industries (e.g., in a 
Virtual Enterprise or Supply Chain) in some activi-
ties, like collaborative planning, proactive prevention 
of the bullwhip effect, among many others. All that 
can be performed on-demand/under users’ requests 
or following automatic pre-scheduled actions, or in 
an autonomous/proactive way taking the user mostly 
as the central point of decision-making. The devel-
opment of higher human-automation symbiosis can 
leverage the creation of more sustainable manufac-
turing workforces in Industry 4.0, enhancing opera-

tional excellence, inclusiveness, satisfaction and moti-
vation, safety, training, and continuous learning.

Important to mention that softbots do not aim 
at replacing managers, but at helping them instead. 
If on the one hand softbots can provide such help, 
on the other hand, it could be observed that manag-
ers’ experience and insights keep being as important 
to make more refined analyses as well as to better 
tune the suggested actions to the reality of their com-
panies. Along the same line, some enterprise infor-
mation systems (like ERP and MES) keep playing a 
crucial role in the companies, so they are not sup-
posed to be replaced by softbots either. The chatting 
part of softbots simply represents a more natural and 
smarter way for operators to interact with computer 
information systems and machines.

The implementation of real manufacturing sce-
narios requires facing a sort of tough issues and takes 
time. This includes e.g.: (i) the preparatory ETL (i.e., 
extraction, transformation and loading of data) steps 
and the modelling and integration of all the several 
necessary business processes and related interaction 
with humans; (ii) business processes are very differ-
ent from each other and there are usually many dif-
ferent governance rules to be respected. This means, 
for example, that some more critical actions should 
be set up to be supervised or authorized by humans 
when softbots are executed; and (iii) the way softbots’ 
knowledge base is modelled, populated, and main-
tained throughout its life cycle is crucial to guaran-
tee answers’ correctness, accuracy, and usefulness. 
This demands very experienced software and data 
science engineers, systems integrators, process do-
main experts, and pilot users to work together in the 
designing, testing, and deployment phases, including 
the conception of all types and dialogue situations be-
tween people and the softbot. All this gives a glimpse 
of the difficulties that implementing a full-fledged 
softbot represents. The following sentence illustrates 
that: “The computational linguistics community has 
been looking at discourse phenomena since the in-
ception of the field. […] In their striving to move the 
technology forward, the next milestone […] to tackle 
is around truly conversational interactions, […] the 
ability to take into account discourse contexts rather 
than just treating a dialog as a sequence of indepen-
dent conversational pairs” [62].

Once deployed, softbot usage also requires deep 
training of operators and managers. This is impor-
tant for companies to get the full benefits of this tech-
nology as well as for people to be indeed prepared 
to understand the provided information for better 
analysis and decision-making. This is not trivial. 
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For example, a recent survey with forty-four leading 
worldwide manufacturers in Industry 4.0 technolo-
gies implementation in plant environments showed 
that data analytics is the top skill to be reinforced in 
training programs [115]. This is a critical aspect. The 
market has been delivering some powerful analytics-
related products linked to chatbots (e.g., [116]), but 
with a too strong emphasis on the product itself, with-
out stressing the underlying hard issues to deal with 
to deploy real solutions.

CPS wrappers can facilitate the integration be-
tween physical CPSs and softbots. However, it is 
important to bear in mind that this keeps involving 
distributed and heterogeneous systems, which use 
multiple and legacy technologies and protocols at dif-
ferent levels. Therefore, interoperability remains a 
hard issue to face to guarantee correct, efficient, and 
reliable communication.

The more softbots are adopted, the more compa-
nies and production management can get dependent 
on them. From the computing point of view, this cre-
ates a potentially central point of failure in a system, an 
issue that would become critical to address. From the 
business process perspective, this issue can be even 
more relevant to handle as more advanced softbots 
are likely to be deeply integrated into other systems 
(sometimes from other companies and sometimes 
to critical systems, machines, and infrastructures), 
exchanging information and triggering actions close 
to them, besides the intensive interaction with users. 
Therefore, proper security schemas as well as fault-
tolerance/resilience strategies should be internally (or 
systemically) implemented, as proposed in [117].

The general area of softbots is relatively old, but 
now it is getting more mature to be used in real cases 
[26]. Nevertheless, there are still several complex in-
trinsic issues to be coped with (as previously men-
tioned) and that represents scientific open points for 
new research. They include, for example, a more 
intense use of machine learning in messages under-
standing, processing, and reasoning; conversations 
and answers design regarding different levels of op-
erators’ experience; natural language processing and 
translations; semantics interoperability, including 
dealing with different human idioms and contexts; 
privacy data control and sharing about users’ infor-
mation; cybersecurity, guaranteeing that softbots are 
not hacked or do malicious actions; and analytics 
based on big data. Emergent issues, such as the use 
of softbots to assist different types of unpaired opera-
tors, starts to get increased attention.

Other works in the literature have mentioned ad-
ditional issues when dealing with softbots in manufac-

turing (or equivalent terms), to be highlighted [72]: 
the usual very long time to deploy and to maintain 
a softbot ready-to-use and always up-to-date and in-
tegrated; some cultural resistance from operators to 
adopt it confidently; most of the current implementa-
tions make use of keyboard and voice to interact with 
softbots. However, new means are emerging (such 
as virtual reality, augmented reality, wearables, and 
metaverse), sometimes combined with other tech-
nologies (such as IoT and big data), which brings up 
new technological and usage challenges; eventual mis-
use of information got from operators’ performance 
during their work; connectivity problems, especially 
in industries and regions where communication in-
frastructures are not so robust; cybersecurity cares (in 
the softbot itself and the communication channel be-
ing used); the use of softbots to help companies in 
supervising working habits of operators for security 
and health purposes; business and context awareness 
in different situations and operators; and the risk of 
operators to become ‘lazy’ when interacting with the 
softbot, expecting it can solve every problem, have all 
answers, check all data, and recommend all decisions.

Despite the mentioned difficulties and some chal-
lenges that a larger adoption of softbots by industries 
represents, all the researchers and developers have 
been pointing out the high potential of this technol-
ogy in terms of higher human assistance, productivity, 
and a more friendly environment in the execution of 
tasks in the increasingly digital and connected factory 
world.
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