
Complex Production-Inventory Replenishment 
Problem with Uncertainty in Customer Behaviour 

1. Introduction

Although there has been a wide range of research 
related to flow-shop manufacturing operations, it is 
still regarded as a complex system consisting of vari-
ous problems. The flow-shop manufacturing system 
has become increasingly complex due to the evolving 
manufacturing intelligence and continuously changing 
market behaviour [1]. New methodologies or tech-
niques are then required to tackle the challenges faced 
by manufacturing operations. This suggestion brought 

about the smart manufacturing concept, where pro-
duction and inventory control is placed at the centre 
of manufacturing performance improvement [2]. Pro-
duction resources such as machines, operators and 
the inventory control policy are key elements of man-
ufacturing sustainability and value creation [3]. In a 
flow process operation, the cause of complexity is gov-
erned by some unplanned but not unexpected occur-
rences. The occurrences, like disruptions, interrupt 
the planned production schedule and cause shortages 
that leave customer orders late or unsatisfied [4]. 

A flow-shop production-inventory system can become very complex in terms of production 
planning and scheduling. One of the causes of complexity in such a system is the uncertainty 
of customer demand behaviour which disrupts production lines and inventory control. The 
uncertainty in customer demand behaviour that causes production disruptions can be in the 
form of order cancellation, change in order delivery sequence and due time. In general, such 
disruptions cause order shortages, late order delivery, and the underperformance of resourc-
es, amongst others. This paper considers the random combination of occurrences of these 
disruptions under different production scenario problems. An innovative framework that 
embeds agent-based simulation, heuristic algorithm, and inventory replenishment strategy 
is proposed to tackle these disruption problems. The integration of these methods formed 
a robust platform for adapting and accommodating disruptions with minimum impact on 
production operations. An experimental study is performed, and the results determine the 
impact of disruptions under different demand and inventory statuses. An inventory replen-
ishment method is compared with sequential and instantaneous replenishment methods to 
establish the significance of the proposed method. The proposed method outperformed 
the sequential and instantaneous methods in terms of the total number of late or unsatisfied 
orders as well as the level of overall inventory sustainability as impacted by disruptions. 
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Disruption in flow-shop production can be caused 
by internal and external factors [5],[6]. External fac-
tors include inadequate raw material supply, logistics, 
weather conditions or customer behaviour [7],[8]. 
Consumer behaviour in the automotive industry is 
uncertain and difficult to predict due to emerging 
technology, market and different factors, including 
economic, political, cultural, demographic and natu-
ral factors, as well as consumers characteristics which 
are reflected by attitude, motivation, perception, per-
sonality, knowledge and lifestyle [9]. Internal factors 
can be in the form of a machine breakdown, skilled 
operators’ availability and other production resource 
shortages [8]. 

In this study, the Original Equipment Manufac-
turing problem is considered, where automotive 
parts and components (order demands) are request-
ed by customers (automotive assembly line) from 
their supplier (OEM facility). It is a case where cus-
tomer orders are requested in a specified sequence, 
quantity and time of delivery to satisfy automotive as-
sembly line operations. However, this initial custom-
ers’ order requirement changes due to uncertainties 
in customers’ assembly line, referred to as uncertain 
customer behaviour occurrences. The uncertainties 
may result in the order being cancelled, sequences 
being altered, and delivery due time being updated.

Consequently, order cancellation increases 
the machines’ idle time and leaves free time slots. 
Changes in the sequence increase the number of 
machine setups, and changes in delivery due time 
cause many late or unsatisfied orders. These changes 
affect production schedules and impact production 
performance. However, the disruption that affects 
the production schedule has no potential of stopping 
or blocking production but rather interrupts the pro-
duction schedule or affects production performance, 
as stated in [10]. This is because this disruption has 
no direct impact on flow-shop resources such as ma-
chines which may breakdown and potentially stop 
production. The impact of the disruption on the pro-
duction plan and schedule is the main consideration 
of this study.

For this reason, techniques to help adapt to and 
accommodate customer-imposed disruptions with 
minimum impact on OEM flow-shop production 
are highly required. A replenishment policy is then 
required to pay back any borrowed items if free slots 
result from disruptions. The purpose of this study 
is to understand and address three possible types of 
customer disruptions, along with their random com-
binations and their impact on production schedules. 
Therefore, the innovative contribution of this paper 

to the research field proposes a new inventory re-
plenishment strategy for solving manufacturing dis-
ruption problems caused by uncertainty in custom-
ers’ behaviour. This allows gradual replenishment 
rather than focusing on specific orders to prevent 
unnecessary inventory while other order inventory 
levels are at risk. In addition, this combination of 
agent-based modelling and heuristics optimisation 
for gradual replenishment of inventory has not been 
introduced before.  

The rest of this paper is organised as follows. 
Section 2 reviews the literature on disruption mod-
elling in the manufacturing environment. Section 3 
presents the proposed methodology that was applied 
to the disruption problem. Section 4 provides ex-
perimentation and results analysis. Section 5 demon-
strates the sensitivity analysis and comparison study. 
Finally, Section 6 provides a conclusion and recom-
mendations for further study.

2. Review on Customer Behaviour 
and Disruption Modelling in Complex 
Manufacturing Environments

In the literature, researchers have investigated 
various disruptions associated with complex manu-
facturing environments constituting a series of chal-
lenges to productivity and performance [11]. 

In relation to disruptions faced in the manufac-
turing sector, authors in [12] investigated flow-shop 
disruption where customer changing demand be-
haviour is considered. The impact of random ma-
chine breakdowns disrupting a two-stage assembly 
flow shop was proposed in [13]. Production disrup-
tion caused by combined machine breakdowns and 
dynamic job arrivals was studied in [14]. Similarly, 
disruption problem caused by machine breakdowns 
in a flexible job shop was studied in [15]. The disrup-
tion caused by due date constraints in a dual-resource 
flexible job shop was discussed in [16]. Variation in 
job processing times as the cause of disruption im-
pacting production schedules was considered in [17]. 
In a similar attempt, [18] researched product mix as 
disruption causing irregularity in job processing. Dis-
ruptions emanating from imperfect production pro-
cesses under different regulations and uncertainties 
were discussed in [19]. Disruption associated with 
random capacities and times was studied in [20], for 
which an efficient heuristic was developed. Authors 
in [21] identified delivery delay and quantity loss as 
a cause of sudden transportation disruption in the 
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production supply chain. Similarly, the production 
and ordering policies under capacity disruption were 
considered in [22] using Economic Order Quantity 
with Disruptions (EOQD) model.

In terms of approaches, [23] proposed a hybrid 
algorithm to solve scheduling problems in a make-to-
stock and make-to-order production environment. In 
[24], a memetic algorithm was developed consider-
ing the due date for joint production and distribution 
schedules. In [25], bi-level non-linear programming 
was formulated for supply chain integrated schedul-
ing. [26] presented a simulation-based FITradeoff 
method to select rules to resolve scheduling prob-
lems. [27] developed batch delivery schedules to de-
termine efficient production. In [28], a serial-batch 
delivery scheduling was developed in relation to two 
agents and due date assignments competing for a 
single machine. Authors in [29] proposed a dynamic 
scheduling algorithm to manage manufacturing dis-
ruption. In [30], a robust scheduling optimisation 
with replenishment capability was developed to re-
solve uncertain machine failure disruptions.

Regarding other heuristic approaches and their 
applications in inventory replenishment, it focused 
on determining shortage orders, borrowing orders, 
and rescheduling borrowed orders for inventory 
replenishment. The replenishment process is done 
gradually using the extended replenishment strategy 
adopted from the works by [31], [32], and [33]. It 
is assumed that the heuristic will be applied when 
there is any type of disruption in the production flow 
shop. This is when orders need to be rescheduled 
for inventory replenishment. The agent-based mod-
el provides additional information for the heuristic 
implementation. Other works by [47], [48] and [49] 
assume that the heuristic will be applied when there 
is any type of randomly occurring disruption in the 
production flow shop. This is when orders need to 
be rescheduled for inventory replenishment. While 
this heuristic targets gradual non-instantaneous in-
ventory replenishment, the heuristics in [34] target a 
sequential and instantaneous replenishment method. 
In [34], the production disruption problem caused 
by customer demand behaviour was considered. The 
study proposed a framework that associated agent-
based modelling, embedded heuristic approach and 
inventory control strategy to tackle the disruption 
problem. However, the proposed method is limited 
in its resolution approach.  The work lacked the 
sustainable control of inventory level to respond to 
the impact of disruption continuously, especially as 
it affects production schedules. It focuses on keep-
ing inventory levels to the maximum and offers high 

priority for very low orders or at critical inventory lev-
els to mitigate disruption effects, also in [12], which 
focused on customer behaviour but tackled the im-
pact of the combination of three customer-imposed 
disruptions – changing quantity, changing delivery 
time and changing production sequence. The study 
introduced inventory sustainability as a means of ac-
commodating the consequences of disruptions. This 
is different from the [34], which is mainly focused on 
investigating the disruption consequences and recov-
ery strategy

Meanwhile, an agent-based modified heuristics 
model is proposed for providing an improved sched-
ule in the presence of different occurrences of un-
certain customer behaviour. It focuses on a different 
combination of the disruptions, the effect on three in-
ventory level classifications, and a non-instantaneous 
replenishment strategy for production sustainability. 
The new method is associated with inventory control 
as a disruption recovery measure for sustainable re-
sponsiveness to disruptions. An extensive literature 
search established no record of the problematic na-
ture in association with the uniqueness of this resolu-
tion method. For instance, [15] only considered ma-
chine breakdown as the factor disrupting, while [16] 
associated due date constraints as disrupting the shop 
floor. The nature of this disruption problem, which 
is a concern for the manufacturing industry, includ-
ing Original Equipment Manufacturing (OEM), is to 
describe in the next section. 

However, in the above studies, disruption prob-
lems and internal disruptions in production resourc-
es were tackled from the supplier side. None of the 
studies focused on disruptions caused by uncertain 
behaviour of customers of the nature presented in 
this paper, especially when considering the different 
combinations of disruptions caused by customers. 
Furthermore, it lacks specific and suitable resolution 
measures for the identified problem. 

3. Research Methodology

3.1 Methodology, Justification and Reason

This paper adopted and further improved the 
Production-Disruption Inventory Replenishment 
(PDIR) framework proposed in [12]. The previous 
methodology framework (Figure 1) was presented as 
it comprised agent-based modelling, a heuristic algo-
rithm, and the association of inventory control as a 
replenishment strategy to solve production disrup-
tion problems.
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Although other approaches could solve produc-
tion-inventory problems, they would not have direct 
comparison factors with the same problem situation 
or production settings suggested in this study. It is 
worth mentioning that the used framework charac-
terised successfully production problem situations 
where customer assembly lines are on constant stand-
by waiting for OEMs production delivery per time. 

The developed methodology consisted of a num-
ber of techniques that have been carefully selected 
to deliver the aim of this paper. The methodology 
justification is presented in Table 1.

The agent-based approach models the flow-shop 
operations to understand the current situation and 
identify and establish other issues. The agent-based 
modelling approach is also designed to help capture 
‘available time’ resulting from uncertain customer be-
haviour, including order cancellations. Also, a heu-
ristic algorithm is proposed and integrated with an 
agent-based model to collectively capture the effect 
of the disruptions problem and solve it. This sub-
sequently provides a solution that requires the flow 
shop to be adaptive and accommodate disruption 
while satisfying customer demands. A case study is 
used as a test bench to justify the agent-based mod-
el, including the proposed heuristics algorithm. A 
sensitivity analysis study is conducted to verify the 
performance of the developed system and justify its 
performance under changing variables in terms of 
the KPIs. Finally, standard deviation measurements 
are calculated to identify the effectiveness of the pro-
posed heuristic algorithm.     

In the next section, the methodology framework 
of this paper is discussed.

3.2 Improved Production Disruption- 
Inventory Replenishment (i-PDIR) 
Framework.

In most cases, the problem's nature and objective 
requirements contribute to developing a resolution 
framework. In the literature, various frameworks of 
a similar nature have been developed and applied 
to solve complex manufacturing problems of differ-
ent magnitudes [12],[36],[10],[22]. For instance, the 
framework of [21] was designed for disruption re-
covery and post-disruption periods and to determine 
the influence of disruptions on production. Other 
studies, such as [37] and [8], have also developed 
integrated frameworks that associate key problem-
solving components to achieve desirable outcomes. 
Since the key framework components of the i-PDIR 
framework form the baseline for the solution strategy 
envisaged for the problem discussed in this paper, it 
is considered an obvious option.

However, the significant difference is the addi-
tional capabilities of the framework and an improved 
and more adaptive heuristic algorithm which offers a 
more sustainable solution strategy for the production 
disruption problem. The proposed heuristics algo-
rithm in this paper provides a policy that works in 
such a way as to gradually replenish inventory after 
the inventory has been used to support production 
shortages caused by disruptions. The previous heu-

Approach/Technique Reason  

Agent-based modelling 
(Approach) 

To mimic the flow-shop operations in the form of collaborative agents to capture ‘available time’ 
resulting from uncertain customer behaviour occurrences. 

Heuristics Optimisation 
(Technique) 

To achieve the best practice of production-inventory control resulting in the best replenishment 
strategy of products. This technique was selected due to its flexibility in adjusting and adapting to 
the changing constraints, high uncertainties and complexities faced in the current problem.

Case Study  
(Technique)

To justify the performance of the proposed heuristics algorithm against the developed one in the 
improved Production-Disruption Inventory Replenishment (PDIR) framework used in [12]. This dis-
ruption problem's nature fits the original equipment manufacturers' case, so it was selected. 

Sensitivity Analysis 
(Technique)

To explore the robustness and accuracy of the developed model outcomes under uncertain demand 
conditions. This was conducted because other methods mentioned in the literature would not have 
direct comparison factors with the same experimental setting and methods suggested in this study.

Standard Deviation
(Statistic) 

To statistically measure the dispersion or spread of each inventory level obtained by each scenario. 
The dispersion results theme reflects the effectiveness of the proposed heuristics.

Table 1. Methodology Justification  
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ristics algorithm proposed by [12] was designed only 
to accommodate and adapt to the three disruption 
types identified based on five different possible in-
ventory cases described in the paper. Therefore, this 
is tagged as an improved PDIR (i-PDIR) framework 
(Figure 1). 

The i-PDIR framework is presented to respond 
to a random combination of production disruption 
caused by uncertain customer behaviour. It operates 
in such a way as to accommodate and adapt to dis-
ruptions with minimal impact on production, where 
inventory control serves as a replenishment strategy.  
Unlike the previous PDIR framework proposed in 
[12], this improved PDIR framework aims to satisfy 
production shortages through inventory borrowing 
while maintaining sustainable inventory levels. This is 
made possible through the additional functionalities 
of the embedded heuristic algorithm (as discussed in 
section 3.2.3 below) within the agent-based model-
ling capabilities. 

As depicted in Figure 1, the improved frame-
work captures the production processes triggered 
by customer demands based on their assembly line 
requirements. In an ‘ideal’ disruption-less situation, 
the framework indicates no significant need for pro-
duction support from inventory (borrowed orders); 
as a result, there is no need for the extended heuristic 
algorithm to aid the replenishment strategy. Howev-
er, uncertain customer behaviour creates production 
disruption due to assembly line uncertainties. These 
disruptions in the production flow-shop are in the 
form of changes in production, quantities, and deliv-

ery due times. The changing demands satisfaction as 
required is not guaranteed because disruptions cause 
inevitable shortages and delays. This is because the 
original production schedule must be altered. Ac-
cording to the framework flow, the customer uncer-
tain behaviour occurrences translate into customer 
orders. The customer order requirement forms pro-
duction processes simulated within the agent-based 
environment. Since disruption causes shortages and 
delays, an adaptive heuristic algorithm is employed 
to reschedule and facilitate inventory borrowing and 
replenishment as enabled through agent-based mod-
elling capabilities. Inventory control is introduced as 
a production support strategy through borrowing and 
replenishment. 

In this strategy, shortage orders are borrowed 
from the inventory when disruptions occur and then 
replenished for continuous production support. The 
replenishment is made possible through the abil-
ity of the agent-based approach to reveal ‘available 
time’ created as a result of uncertain customer be-
haviour occurrences. A heuristic algorithm enables 
the rescheduling of borrowed orders by utilising the 
‘available time’. Rescheduling borrowed orders back 
to the inventory is done alongside customer demand. 
The completed customer orders and any borrowed 
quantities (to complete the order) reach the dispatch-
ing node where customer demand is successfully sat-
isfied. The next production cycle commences if the 
production period has not been fully exhausted. 

In the next section, the individual components of 
improved PDIR are explained. 

Figure 1. Improved Production Disruption-Inventory Replenishment (i-PDIR) Framework [12]
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3.2.1 Agent-Based Module

This section presents the development and imple-
mentation of the ABM approach incorporated in the 
improved PDIR framework of manufacturing pro-
cess scheduling for the system simulation. 

The choice of selecting the agent-based simula-
tion approach as a suitable technique in this research 
was inspired by the investigation of related studies. 
[38] applied agent-based modelling to disruption 
problems in the transportation industry. Specifically, 
the investigation conducted in the manufacturing in-
dustry revealed the implementation of an agent-based 
simulation modelling approach in [39] and [40], 
amongst other related studies. In the past, produc-
tion-inventory scheduling problems have been tack-
led using various well-known simulation modelling 
methodologies, but recently, agent-based modelling 
has gained popularity as another helpful technique to 
deal with simulation problems in several disciplines. 

Agent-based modelling has been reviewed for 
this study to investigate its viability in handling the 
disruption problem. Based on the current trends in 
simulation methodology, the agent-based method is 
essential because it provides advanced opportunities 
to find solutions to the research problem and evolve 
with the current technology. This quality is found 
useful in the agent-based simulation modelling meth-
od. Agent-based modelling can be described through 
its architectural model, as shown in Figure 2. 

Figure 2 shows that a customer order was received 
and translated into an order agent, then passed to the 
flow shop agent (agent environment). Several ma-

chine and operator agents worked collaboratively to 
order agents through the flow shop agent while the 
flow shop agent provided the information for or-
der processing operations. The order production is 
started based on the process plan and schedule allied 
to the order agent through the flow shop agent. The 
details of each agent's information and connectivity in 
the ABM system will be discussed.

Flow Shop Agent (Agent Environment): Flow Shop Agent (Agent Environment): The flow 
shop agent acts as a controller in the manufacturing 
system. It holds the process rules for order opera-
tions and allocates machine agents to order and op-
erator agents to machine agents. The machine and 
operator allocation and order scheduling mechanism 
is conducted within the flow shop agent. According 
to the pre-defined sequence of operation of order 
processing, the system adaptation to any disruptions 
is based on the proposed heuristics algorithm.

Order Agent:Order Agent: The order agent receives customer 
orders in the form of part types and then splits these 
order types into a sequence of operations. Each split 
consists of units (quantity) of order types in the pre-
determined production sequence. Each order agent 
holds the information/attributes regarding its spe-
cific customer order, including order arrival time, 
order quantity, split, due date, due time, and order 
sequence. The order operation route is given to the 
flow shop agent controller to provide scheduled or-
der processes generated by the interaction between 
machine agents and operator agents before being 
sent back to the order agent. According to the order 
requirement specifications, the order agent received 
the plan and schedule of order operation, including 

Figure 2. Architectural Model of the Agent-Based System
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allocated resources (machines and operators).
Operator Agent:Operator Agent: Each operator agent represents 

an operator in the pool of operators in the manufac-
turing production cycle. Operators are allocated to 
machines based on their availability for the job and 
skillset.

Machine Agent:Machine Agent: On the flow shop, individual ma-
chines are represented by a machine agent with in-
formation/attributes such as machine capacity, setup 
time for each order processing, type of order which 
can be processed, machining time for each order 
type, processed order information, and operator en-
gagement information.

After receiving order information from the flow-
shop agent, the machine agent considers the informa-
tion to determine whether it can process the order 
with the allocated operator. If there is a good match 
for both machine and operator on order, the order 
goes straight into processing or is placed in a queue if 
machines or operators are currently busy. 

The development of agents includes identifying 
their collaborations; hence, a messaging sequence 
model is required to present how agents collaborate.      

The idea of the proposed messaging sequence 
within the agent-based environment is obtained from 
[37], where the idea was implemented in the supply 
chain industry for the supply chain entities represent-
ing the interactive ability of individual agents.  

The messaging system is useful because it allows 
informed interaction among agents. Agents’ activi-
ties and information can be stored, exchanged and 
acted upon by another agent within the system. This 
enables order processing through messages such as 

order requests, resource allocation, order produc-
tion, and dispatch information sent within the system. 
Therefore, the messaging sequence concept of the 
agent-based model is adopted in this paper (Figure 
3) for the three agents (order, machine and operator) 
to interact when customer requests are sent to the 
production floor to be processed.

The customer sends order requests to the produc-
tion manager, which are updated on the production 
floor. Upon receipt of a customer order request, the 
production schedule updates machines based on the 
order information. The order and machine schedule 
assign operators to the production job. As a result, a 
machine allocated to an operator engages the order 
for production processes. The production processes 
occur in a loop of operation until all assigned orders 
have been completed. According to the request, the 
completed order information is passed to the pro-
duction floor to dispatch to the customer. 

The concept of the knowledge about the ABM 
approach for the current problem can be visualised 
using Figure 4, adapted from [38], showing a simple 
conceptual map of ABM relationships.

Figure 4 shows what agents are and their relation-
ships with each other within the agent-based model. 
It also shows the individual action agents perform, 
the goals they achieve, and the agent-based model 
composition.

3.2.2 Inventory Strategy Module 

The concept implemented for the inventory con-
trol module was adapted based on the investigation of 

Figure 3. The System Message sequence diagram [31] 
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related studies. The studies of [43] and [44] utilised 
an inventory replenishment strategy for deteriorating 
items in finding a solution to the problem of produc-
tion disruption. The same idea has been used in the 
supply chain industry by [45] and [46], forming part 
of the integrated units for the disruption problem.

The inventory module is one of the proposed 
framework components through which the inventory 
replenishment strategy is applied. It focuses on satis-
fying customers’ changing requirements in the face 
of disruption through inventory support and replen-
ishment of the inventory through strategic replenish-
ment scheduling on the flow shop. The idea relates to 
non-instantaneous replenishment referred to in [47], 
[48] and [49]. Non-instantaneous replenishment oc-
curs when production is not instant, and inventory 
replenishment is gradual rather than in lots. The 
three papers discuss optimal replenishment policies 
for non-instantaneous deteriorating items. In [44], 
the focus is on deteriorating items with a quantity dis-
count. In [47], stock-dependent demand is the focus 
where optimal replenishment policy was proposed, 
while [49] based their study on joint-pricing replen-
ishment for non-instantaneous deteriorating items. 

This study builds on these practical motivations 
concerning production-inventory systems from these 
authors. However, the objective is to provide a strate-
gy that applies inventory as support for production to 
recover from disruption. This is based on a gradual 
sequential inventory replenishment policy. 

The proposed policy works in such a way as to 
gradually replenish inventory after the inventory has 
been used to support production shortages caused 
by disruptions. The support from inventory is in the 

form of parts (order) ‘borrowing’ and needs to be 
replenished to maintain inventory levels of orders 
for continuous production support. Orders are bor-
rowed from their corresponding part types when pro-
duction shortages satisfy customer demand by com-
pleting customer order quantity in due time and right 
sequence. The replenishment of borrowed parts is 
done when there are free time slots (available time) 
and pre-defined rules (as detailed within the heuristic 
algorithm). The free slots or available times are uti-
lised to replenish borrowed orders and are usually 
created by disruption types like order cancellations.  
The inventory levels of part types are classified as 
full, safe, and critical inventory levels. However, the 
number of parts to be replenished depends on the 
available time and the processing time of each unit 
of the selected part. For instance, the total number of 
parts per unit process time would be less or equal to 
the total available time. The replenishment attempt 
would continue to prioritise critical inventory until 
two or more inventory levels of parts are at safe lev-
els. At this stage, the decision is made through agent-
based autonomous capability using the knowledge of 
current inventory levels, the available time, process 
time of each part type, production rate and shortages, 
and demand rate to select part type and quantity to 
replenish. This is the idea of the proposed gradual 
inventory replenishment policy. In this manner, the 
proposed strategy is sustainable to adapt to disrup-
tions and manage production processes.

The heuristic algorithm module, which incorpo-
rated the decision rules and formed a strategic part 
of the integrated framework, is discussed in the next 
section.

Figure 4. A simple ABM visualisation
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3.2.3 Heuristics Algorithm Module

Heuristic research is an approach that allows re-
searchers to gain insights and discover methods that 
allow further investigation into the problem domain, 
particularly in manufacturing production problems 
[50]. According to [51], one of the methods of design-
ing a heuristic is intensive study and observation of 
a target nature and feature of the selected problem. 
The use of heuristics can be regarded as an experien-
tial guide to problem-solving [52].

For this reason, a more practical approach is ad-
opted to develop heuristics by observing reality, us-
ing an OEM manufacturing context as a study case 
benchmark for related problems. This is similar to 
[53], where a metaheuristic algorithm was developed 
to compute a robust production sequence of a real-
world case production system. The development of 
the heuristic algorithm considers actual demand, dis-
ruptions, productions and inventory levels scenarios. 
In addition, with an industrial expert view, it captures 
relevant possibilities for disruption occurrences and 
inventory level status. This particular heuristic ap-
proach is different from one applied in both [35] and 
[12] in that when developing the heuristic, the inven-
tory level status was categorised into five scenario cases 
in response to disruption occurrences. The algorithm 
considered the replenishment approach for each 
case. Case 1 represents where all inventory levels are 
full, and no replenishment is required as no disrup-
tion causing shortages occurred. Case 2 represents all 
inventory levels at a critical stage where replenishment 
will be based on available and minimum setup time. 
Also, for case 3, which represents all inventory at a 
safe level, inventory replenishment is random. For 
case 4, where one inventory level is critical and others 
are safe with varying levels, the critical inventory level 
is prioritised. In case 5, where two or more inventory 
levels of the order are critical, the replenishment of 
critical inventory is based on available time, minimum 
setup time, and demand status. Based on these cases, 
the algorithm sets out steps for improving production 
performance during disruption occurrences. Ulti-
mately, the algorithm helps to maintain the inventory 
levels of all order types involved in production. In-
ventory level maintenance is a process that establishes 
continuous support for production shortages to meet 
expected service levels to satisfy customer demand. 

The proposed heuristic algorithm offers a tech-
nique for synchronising inventory and production 
decisions. The strategy is related to manufacturing 
system finished product inventory levels, which is 
the case of manufacturing systems receiving differ-

ent order demand types from customers. Ideally, 
the manufacturing facility will process orders as they 
are received and schedule them based on the flow of 
shop resources. They are also expected to maintain 
corresponding inventory levels for all order types. 
A functional inventory policy is expected to guide 
against order stock-out and over-stocking.

The development of the heuristic algorithm focus-
es on gradually replenishing inventory based on indi-
vidual order levels rather than focusing on a particular 
order type. In this way, order inventory order levels 
would not be at risk (critical level), which might pre-
vent them from supporting production. It considers 
the order with the lowest inventory level as a priority 
and replenishes up to the next order inventory. It con-
siders orders of the same level by applying replenish-
ment based on the production schedule. When there 
is an order inventory of the same level, the heuristic 
considers orders before and after the available time 
provided by the ABM. Based on different conditions, 
the heuristic algorithm considers creating a new setup 
where a different order type is expected to be replen-
ished.    

The heuristic algorithm steps also considered dif-
ferent inventory level scenarios and flow-shop avail-
able processing time.  The scenarios are a) all full in-
ventory; b) all critical inventory; c) all safe inventory; 
d) one critical one average inventory; e) two or more 
critical and average inventory; e) two or more critical 
inventory; f) two or more average inventory. 

This algorithm's overall objective is to apply a rule-
of-thumb approach to provide the solution in a rea-
sonable timeframe for tackling the disruption prob-
lems affecting the flow-shop production environment. 
In order to stratify the overall objective, the target of 
the algorithm is to track and account for the selected 
Key Performance Indicators (KPIs) and technical 
and operational aspects of production. This is for the 
performance measurement of the production and the 
applied algorithm against other comparison metrics.

The role of algorithm steps are as follows: 

• Obtain demand requirements, input and pro-
duction parameters (step 1).

• Use baseline modelling rules to sort demand 
in sequence to allow subsequent re-sequencing 
(step 2).

• For each production day, schedule demand in 
the sequence of their due time (step 3).

• Perform rescheduling when there is a change in 
demand sequence or/and change in due time 
(step 4).
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• Prioritise order satisfaction by borrowing from 
inventory where necessary (steps 5 and 6).

• Obtain available time through ABM time-shar-
ing to support production and/or ensure sus-
tainable inventory levels (steps 7 and 8).

• Using available time for replenishment, sched-
ule orders for inventory using the scenario cases 
to maintain reasonable inventory levels for each 
type and keep track of inventory levels per time 
(steps 9 and 10).

• Ensure inventory levels are maintained, and 
production is supported whenever possible 
whenever the time is available (step 11).

• Keep records of production, unsatisfied orders, 
shortages, borrowed orders, inventory levels, 
replenishment, due time and satisfying orders 
to measure performance and analysis (step 12).

• Perform all steps until production ends (step 
13).

The scalability of the heuristic algorithm is evident 
as it works well for the varying production scenario 
experiments such as low, average and high demands 
under critical inventory levels (discussed in section 5 
below). The notations used in the proposed heuris-
tics algorithm are listed below:  

Heuristic notationsHeuristic notations
• n = number of orders
• Q = Demand quantity

• ∆Q = Disrupted demand quantity
• t = Demand delivery due time
• ∆t = Disrupted delivery due time
• Qs = Demand sequence
• ∆Qs = Disrupted demand sequence
• Qi = Inventory quantity
• P = Production
• Qb = Borrow quantity from inventory 
• Qu = Unsatisfied demand
• Qf = Satisfied demand (This includes type & 

quantity of order)
• S = Shortage
• Qr = Replenishment quantity
• Qrmin(max) = The minimum of the maximum 

number of replenishment quantity
• N = current day
• N+1 = Next day
• ABM = Agent-Based Model
• ATtime = Total available time
• ACtime = Current available time being allo-

cated
• Ts= Machine setup
• Tp = Process time
• Pd = Production duration

The following steps represent how the heuristic 
algorithm is executed to improve production perfor-
mance despite disruption and borrowing.

The Heuristic StepsThe Heuristic Steps
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4. Experimental Results and 
Discussion  

A case study based on one of the biggest Origi-
nal Equipment Manufacturers of automotive parts 
and components, such as exhaust pipes, fuel filler 
neck, diesel particulate filters, etc., in the UK, was 
conducted to justify the performance of the pro-
posed algorithm. Three issues were identified from 
the literature, including the manufacturing-assembly 
configuration layout [54], the make-to-order type of 
production [55], and just-in-time inventory character-
istics, as such systems require careful inventory con-
trol because it represents a large percentage of the 
total usage inventory value [56]. These aspects suit 
the nature of the investigated problem, and hence, an 
OEM was used to assess the performance of the de-
veloped agent-based model along with the proposed 
heuristics optimisation algorithm.

The selected scenarios are directly based on the 
factory production settings. These scenarios were 
run with a random combination of the three types of 
disruptions. Different demand volumes and critical 
inventory statuses were considered for experimen-
tation for each disruption combination. The critical 
inventory status is selected because it is the most chal-
lenging constraint when disruption occurs, based on 
expert consultation. 

The three challenging scenarios and their combi-
nations are listed as follows;

• High order volume vs Critical inventory level 
(HC)

• Average order volume vs Critical inventory 
level (AC)

• Low order volume vs Critical inventory level 
(LC)

The High, Average and Low order volumes sce-
nario of order number ranges of 

• High order volume: 80-100 orders 
• Average order volume: 40-50 orders
• Low order volume: 20-25 orders 

For High order volume scenarios, 3 shift patterns 
were set, 2 shift patterns for Average order volume 
while a single shift for Low order volume as follows:

• Shift 1: 00:01 - 08:00
• Shift 2: 08:01 - 16:00
• Shift 3: 16:01 - 23:58 

Each scenario was considered under a Critical 
inventory level of 10 conditions to mimic a real-life 
production scenario. The range of order volume 
has been selected to replicate the real-life produc-
tion order range. The order quantity range has been 
set as random distribution to maintain a controlled 
variation with the critical level inventory status con-
sidered in these experiments. The number of shifts 
is assigned corresponding to the order volumes. The 
Critical inventory levels are set to understand pro-
duction behaviour under this limit. The inventory is 
one of the most influential constraints that impact the 
production-replenishment process. Therefore, it is 
crucial to study its behaviour during disruption oc-
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currences. The selected shift patterns mimic the real-
life system operation, corresponding to the demand 
volume. 

The impact of the proposed framework on agent-
based and heuristic algorithms is discussed based on 
the experimental results in terms of inventory behav-
iour and late/unsatisfied orders. 

4.1 Inventory Level Behaviour

In Figures 5-7, the overall behaviour of the ‘As-Is’ 
(which is the current system situation) inventory and 
the proposed heuristic algorithm can be observed 
for the 100 order types over the 20 days production 
period. The inventory replenishment strategy, which 
demonstrates gradual and non-instantaneous replen-
ishment, is shown. The graphical representations in 
6-7 indicate Critical inventory levels of 10 orders un-
der Average and Low order volume scenarios for the 
current state and at the point of replenishment when 
the production period is completed.

It can be observed in Figure 5 that as much as pos-
sible of the zero inventory levels were replenished. 
This is because order volume and disruption are 
high, while inventory support is critical. This implies 
persistent production shortages and a lack of inven-
tory support. The situation requires as much replen-
ishment as possible to minimise the number of late 
orders and sustain inventory levels.

However, there are conditions to be met before 
replenishment can take place. The conditions that 
govern the heuristic algorithm for replenishment are 
as follows:

• Machine and operator availability at available 
time slots used for replenishment. 

• Available time slot sufficient for order quantity 
awaiting replenishment.  

• The similarity of machine setup for the order 
types in between the available time slots

This explains why some orders were not replen-
ished even though they were at zero levels. The 
situation is slightly different for average disrupted 
orders in Figure 6. There are fewer orders at zero 
inventory, and inventory levels are more sustained. 
This indicates a corresponding average impact of 
disruption on production in this scenario.  Replen-
ishment of orders is possible when other conditions 
are satisfied. These conditions include machine and 
operator availability at the time when it is available. 
The replenishment is possible when order quanti-
ties and their process times fit within the available 
timeslots. When all these conditions are not satis-
fied, replenishment might not occur, even when 
there is available time and inventory is at zero levels, 
in Figure 7, where virtually all inventory levels are 
seen at the maximum except order 4. This situation 
in Figure 7 means that random disruption of low 

Figure 5. Replenishment strategy graph of High order vs Critical inventory 

Figure 6. Replenishment strategy graph of Average order vs Critical inventory  
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order volume has little or no effect on flow-shop 
production.

To justify the proposed method’s performance, 
its results are compared with the sequential replen-
ishment method in the next section.

4.2 Total Number of Late/Unsatisfied Orders 

One of the purposes of the proposed approach is 
to satisfy customer demand even in the face of disrup-
tions continuously. Customer order satisfaction can 
be measured by the number of orders delivered. As 
KPIs, the number of late/unsatisfied orders is used 
to demonstrate the impact of the proposed heuristic 
on the flow-shop operation compared to the current 
operating state. Table 2 presents the results of the 
initially selected three order types for all experiment 
scenarios. 

Table 2 highlights the total demand after disrup-
tions for all scenarios and calculates the total number 
of late/unsatisfied orders for both ‘As-Is’ and when 
the proposed heuristic is applied. In the High order 
Critical inventory (HC) scenario, 1152 orders are 
late in the ‘As-Is’ situation. Compared with the pro-
posed heuristic (675 late orders), there is a 41% im-
provement in the number of late/unsatisfied orders. 
Meanwhile, for the Average order Critical inventory 
(AC), 38% improvement was achieved when the pro-
posed heuristic was applied. When the proposed 
heuristic was applied, the Low order Critical Inven-
tory (LC) percentage improvement record was 100%. 
This means there is no late or unsatisfied order even 

when there are disruptions under this scenario. Even 
though the proposed heuristic method did not com-
pletely satisfy all customer orders for both HC and 
AC scenarios, it demonstrates a significant improve-
ment that minimised the number of late or unsatis-
fied orders in all cases of critical inventory limit.

5. Sensitivity Analysis and Comparison 
Study 

Other methods mentioned in the literature would 
not have direct comparison factors with the same 
experimental setting and methods suggested in this 
study, and hence, they might give a biased judgement. 
Therefore, a sensitivity analysis study and a compari-
son study with other suggested and proposed meth-
ods are carried out to verify the performance of the 
developed system and justify its performance under 
changing variables in terms of the KPIs.

5.1 Sensitivity Analysis

A sensitivity analysis study of changing model pa-
rameters is carried out to measure the parameters’ 
impacts of fluctuations on the outputs and verify 
the developed system's performance. In this study, 
the behaviour of the developed system in response 
to different levels of demand, order numbers, and 
inventory is of utmost interest to test performance. 
The sensitivity analysis explores the robustness and 
accuracy of the developed model outcomes under 

Figure 7. Replenishment strategy graph of Low order vs Critical inventory   

Scenarios Total Demand after Disruptions As-Is Proposed Heuristic

HC 4820 1152 675

AC 2547 248 153

LC 1261 15 0

Table 2. Total demand vs unsatisfied orders 



278 Adediran and Al-Bazi

International Journal of Industrial Engineering and Management Vol 13 No 4 (2022)

uncertain demand conditions. The uncertainty in de-
mand caused by customers' disruption causes varia-
tions in order and inventory level parameters. Moni-
toring the relationship among these parameters and 
the impact of their variations in the model parameter 
setting is useful for identifying the inputs that cause 
significant uncertainty in the KPIs and for practical 
model analysis. 

The proposed algorithm for replenishment is 
compared with the current state of “As-Is”, a se-
quential replenishment method and instantaneous 
inventory replenishment proposed by [35]. The idea 
of non-instantaneous and gradual inventory replen-
ishment of the proposed algorithm makes both the 
sequential and instantaneous methods comparable. 
This is related to the variable inventory levels at the 
time of replenishment. The proposed algorithm is 
developed to strategically replenish inventory based 
on each level, quantity and time availability. The se-
quential method replenishes inventory in order se-
quence by considering the required order number or 
each order inventory per time. On the other hand, 
the instantaneous method replenishes order inven-
tory instantly. See Table 3 for variable parameters 
applied in the range: High Order Volume (100-120); 
High Demand Volume (80-100); Average Order 
Volume (40-60); Average Demand Volume (40-50); 
Low Order Volume (20-40); Low Demand Volume 
(20-25); Full Inventory=100; Safe Inventory Volume 
=50.

Table 3 shows the effect on late order KPI caused 
by changes in input parameters. A small change in 
high-order demand at the full inventory level signifi-
cantly changes the number of late orders. As shown 
in Table 2 above, the highest number of late orders 
is recorded for high demand. 

 However, the lowest number of late orders at 383 
reveals the better-performing method proposed in 
this study compared to other methods. The average 
level of order demand variation has a corresponding 

level of effect on late orders. However, the perfor-
mance of the proposed method shows superiority 
with zero and 33 late orders at full and safe inventor 
levels, respectively, compared to other methods. The 
considerable variation in low-order demand at both 
full and safe inventory levels results in no late orders. 
This indicates that huge demand variation might not 
significantly affect KPI when high or safe inventory 
levels are maintained.

The robustness of the proposed method is more 
sensitive to high order demand at full or safe invento-
ry levels, and the impact is insignificant for low order 
demand under the same inventory level parameters.

5.2 Comparison Study 

A comparison study is also conducted to deter-
mine the effectiveness of the proposed approach for 
solving the disruption problem.  

The standard deviation was used to statistically 
measure the dispersion or spread of each inventory 
level obtained by HC, AC, and LC scenarios. This 
is because the inventory fluctuates with changing de-
mand, and the measure of dispersion is one of the 
ways to judge whether the fluctuations are smooth. 
However, the smoothness degree justifies the ap-
proach's effectiveness in performance [57]. The criti-
cal inventories for high (HC), average (AC) and low 
(LC) levels are selected as the lowest values of the 
data range and are more likely to diverge compared 
to full or average-level inventories with a wider range. 
Table 4 compares the three methods and the ‘As-Is’ 
current state by calculating the standard deviations 
from their mean-based inventory level behaviour.

The standard deviation measures the dispersion 
of the results of all the scenarios. The effectiveness 
of the proposed heuristics is shown by less disper-
sion of the results obtained. The proposed heuristic 
for replenishment for the HC scenario tends towards 
an average of 13.3, which indicates a more sustain-

Data Set- Parameters “As-Is” Sequential Instantaneous 
Replenishment Method Proposed Heuristic

High Order Full Inventory 785 521 455 383

High Demand Safe Inventory 710 408 311 209

Average Order Full Inventory 164 125 37 0

Average Demand Safe Inventory 205 384 178 33

Low Order Full Inventory 0 0 0 0

Low Demand Safe Inventory 0 0 0 0

Table 3. Comparison of Late Order KPI
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able level for high-order inventory than the current 
state (As-Is) and other methods of replenishments. 
The standard deviation of the “As-Is” with the instan-
taneous method for AC is increased by 49%, which 
indicates the worse scenario as it provided a higher 
standard deviation value from 21.2 to 31.6. Likewise, 
the sequential method gives an increased standard 
deviation of 39%. The best improvement provided 
by the proposed heuristic for replenishment at the 
LC scenario is 70%, indicating a sustained inven-
tory level capable of responding to disruption from 
the flow shop. Under the LC scenario, the 3% value 
for the sequential method indicates the lowest and 
relatively minor significance support for production 
disruption. Under the AC scenario for the proposed 
heuristic for replenishment, a 37% improvement is 
considered a significant sustainable inventory con-
trol. In general, comparing “As-Is” against the pro-
posed heuristic for replenishment, the heuristics 
outperformed the “As-Is” against both the sequential 
and the instantaneous replenishment methods. 

6. Conclusion and Future Work 

The production disruption caused by uncertainty 
in customer behaviour, causing complex behaviour 
for the flow-shop system, has been successfully tack-
led through the improved PDIR framework. The 
improved framework was developed to assist pro-
duction planners in a flow-shop system to manage 
disruptions, which is crucial to customer satisfaction. 
The innovative framework included the integration 
of agent-based simulation, heuristic algorithm and 
inventory replenishment. The technique as a whole 
took into consideration the agent-based messaging 
model of problem-solving, the adaptability of the 
heuristic to the changing disruption problems and 
the inventory replenishment to control and support 
shortages caused by disruptions. The improved heu-
ristic for non-instantaneous replenishment makes it 
possible to achieve inventory smoothness. This as-

sisted in accommodating and responding to disrup-
tion, with sustainable advantage from the inventory 
control. 

The experimental study was conducted for high, 
average and low order demand under critical inven-
tory levels, demonstrating the heuristic algorithm's 
effectiveness and scalability within the improved 
framework. Comparing the proposed method with 
the sequential method of replenishment showed a 
quantifiable improvement in terms of the number of 
late/unsatisfied orders.  The best performance of the 
proposed heuristic for replenishment is achieved un-
der the LC scenario with a percentage improvement 
of 70% compared with other “As-Is” situations for 
the LC scenario of other replenishment methods. 

This study used a real-life case study to justify the 
proposed algorithm. The impact from the wider-
industrial perspective is the provision of informed 
decision-making potentials to production manag-
ers, schedulers, and planners with related disruption 
problems similar to the one considered in this paper, 
especially within the OEM production environment.

Limitations arose since no solution approach or 
method fits all problems possibilities. As the study 
attempted to tackle customer-imposed production 
disruption in OEMs flow-shop, in flow-shop setting, 
the cost of holding inventory and unsatisfied orders 
are significant to performance estimation. Cost func-
tion has not been considered in the developed ap-
proach, but rather the inventory was utilised as stra-
tegic means of dealing with disruptions and satisfying 
customer orders.

Further study can consider the cost impact of the 
late/unsatisfied order to help with budgeting. Also, 
the impact of uncertain customer behaviour can be 
extended to open shop and job-shop systems. To 
further investigate disruption impact and produc-
tion performance, other meta-heuristics techniques, 
such as Genetic Algorithms or Swarm Optimisation, 
could be used to explore more promising solutions. 
Likewise, other behavioural customer consequences 
would be a good area of research, including prefer-

Standard Deviation

Scenarios As-Is Sequential Instantaneous 
Replenishment Method Proposed Algorithm

HC 16.4 14.3 18.2 13.3

AC 21.2 29.5 31.6 13.3

LC 4.22 4.11 4.40 1.28

Table 4. Comparison of High Order Volumes
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ences, quality and attraction to other similar products 
demand. It is worth mentioning that the selection and 
use of appropriate statistical hypotheses tests could 
be further investigated from the statistical point of 
view to justify the significance of achieved inventory 
level results using the developed algorithms. 
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