
Design of disaster relief logistics network system 
by combining three data envelopment 
analysis-based methods

1. Introduction

The disaster relief logistics network system 
(DRLNS) plays an essential role in providing relief 
items such as first aid, drinking water, food, and daily 
commodities to alleviate people's suffering [1]-[3]. 
These two terms, DRLNS and emergency relief sup-
ply chain system, are frequently used interchange-
ably. In 2017, the US experienced a historic year of 
weather and climate disasters. The US was seriously 
affected by 16 separate billion-dollar disaster events, 

including three tropical cyclones, eight severe storms, 
two inland floods, a crop freeze, drought, and wild-
fire. During 2020 and 2021, the US experienced a 
very active year of weather and climate disasters (see 
Figure 1), including the COVID-19 pandemic.  

 The DRLNS considered in this study is a two-eche-
lon supply chain system with three distinctive disaster 
relief facilities (DRFs), as shown in Figure 2. They are 
(i) Central Warehouses (CWHs), where disaster relief 
commodities are stored, (ii) intermediate response 
facilities termed Relief Distribution Centers (RDCs), 

The recent pandemic outbreak and weather-related disasters show that there is no place 
immune from such emergency events. Thus, it would be essential to provide disaster re-
lief items efficiently through a disaster relief logistics network system (DRLNS). This paper 
considers a design problem of DRLNS. For this purpose, this study presents a process of 
combining the multi-objective programming (MOP) model with the three data envelopment 
analysis (DEA)-based methods.   Through a case study, the proposed MOP-DEA design 
framework would help the decision-makers better evaluate the efficiency of various DRLNS 
configurations and identify the robust and efficient ones among them.     
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where people can more effectively gain access to relief 
goods, and (iii) neighborhood sites (NBSs) in need of 
humanitarian items. The chief objective of the strate-
gic level is to strengthen disaster preparedness as well 
as to select the most cost/distance-effective location 
of CWHs and RDCs among a set of candidate loca-
tions, to establish the distribution of disaster supplies 
throughout the ERSC, and to assign NBSs to RDCs 
and RDCs to CWHs. However, traditional cost-based 
facility location models implicitly assume that all the 
facilities will always be in service or available and do 
not consider an associated risk of disruption. Due to 
natural disasters, accidents, or strikes, all facilities are 
susceptible to disturbances. Such disorders would be 
worsened due to a lack of flexibility and interdepen-
dency, commonly presented in the general supply 
chain systems. 

 Evaluating various DRLNS alternatives and iden-
tifying the most efficient options would be essential 
for efficient logistics network planning. The typical 
multi-objective programming (MOP) model allows 
the decision-maker to assign weights to the objective 
function's deviational variables. It would be necessary 
to reflect on the importance and desirability of de-
viations from the multiple goals. However, the actual 
efficiency of the resulting DRLNS is not known. No 
standard procedure is available for assigning values to 
the weight factors to guarantee we will find the most 
desirable solution to a MOP problem. Ragsdale [4] 
suggests that an iterative procedure should be fol-
lowed, using a particular set of weights, concluding 

that it is essential for us to repeat this process several 
times to find the most desirable solution for decision-
makers. Thus, it is unavoidable for decision-makers 
to use some of their subjective judgment. Evaluat-
ing various DRLNS network schemes objectively, 
not subjectively, and selecting the most efficient al-
ternatives would be essential for designing DRLNS. 
Hence, it is imperative to answer how to evaluate the 
efficiency of all alternatives generated by the model 
and select the most desirable one(s) without any sub-
jective assessments. 

Data envelopment analysis (DEA) is one of the 
methodologies that have been widely used to evalu-
ate the efficiency of decision-making units (DMUs) 
that have multiple inputs to use and outputs to pro-
duce. The classical DEA (C-DEA), proposed by 
Charnes et al. [5], generates a single, comprehensive 
performance measure for each DMU. The best ratio 
would identify the most efficient DMU among all the 
DMUs. The C-DEA allows each DMU to be evalu-
ated with its most favorable weights due to its nature 
of self-evaluation. Consequently, the C-DEA model 
is permitted to ignore unfavorable inputs/outputs to 
maximize self-efficiency. That would be why it may 
suffer from a lack of discrimination particularly. The 
two most popular methods for remedying C-DEA 
deficiency are the cross-efficiency (CE) DEA and the 
supers-efficiency (SE) DEA method. 

The CE-DEA ranks DMUs with the main idea of 
peer evaluation rather than DMU's usual pure self-
evaluation. Due to its enhanced discriminating pow-

Figure 1. US 2021 billion-dollar weather and climate disasters
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er, many applications based on the CE evaluation 
have been published [6]-[9]. As Doyle and Green 
[10] note, the primal issue is the non-uniqueness of 
CE scores due to the often-present multiple optimal 
DEA weights. The second issue is that the CE meth-
od frequently ranks inefficient DMUs ahead of fully 
efficient DMUs. The idea of super-efficiency (SE), 
which is mainly developed by Anderson and Peter-
son [11], is that the C-DEA model is applied, exclud-
ing a DMU under evaluation from the reference set 
of the C-DEA model. Charnes et al. [12] use the SE-
DEA model to study the sensitivity of the efficiency 
classification. But the critical issue of using the model 
is that the adjacent DMUs decide the SE score (SES) 
of an efficient DMU, so it would be unreasonable for 
DMUs to be ranked by the SESs.  

 This paper might be the first attempt to integrate 
these three popular DEA methods to eliminate each 
method's weaknesses and apply the proposed meth-
od for designing DRLNS. Thus, we can evaluate vari-
ous DRLNS network schemes objectively, not subjec-
tively, and select the most efficient alternatives, which 
would be essential for planning the DRLNS network. 
Thus, the contribution of this paper is to propose a 
framework consisting of how to formulate the design 
problem using a MOP model and how to identify 
the robust and efficient logistics network systems for 
disaster relief operations by combing the three DEA 
evaluation methods.   

2. Literature review and research gap

The number of publications on the DRLNS or 
humanitarian logistics design has considerably in-
creased since it has become an important strategic 
decision due to the significant damage inflicted by 
several natural disasters [13]. Van Wassenhove [14] 
emphasizes that since disaster relief is 80% logistics, 
disaster relief planning should be through efficient 
and effective logistics operations and, more precise-
ly, supply chain management. Logistics planning in 
emergencies involves quickly and efficiently distribut-
ing disaster supplies from DRFs to the affected areas 
via supply chains. [15]-[27] consider various prob-
lems related to DRLNS design and analysis. Several 
authors also consider the effect of the COVID-19 
pandemic on the design of DRLNS. Gress et al. [28]  
present a methodology for designing a DRLNS to 
distribute COVID-19 vaccines in Mexico. Malmir 
and Zobel [29] propose a sustainable DRLNS design 
model considering the COVID-19 outbreak. Abdul 
Rahman et al. [30] examine the trend of humanitar-

ian supply chain studies pre, during, and post-COV-
ID-19 pandemic.

 Multi-objective programming (MOP) models are 
applied for designing efficient DRLNS. Cao et al. 
[31] propose multi-objective programming models 
of relief distribution for sustainable DRLNS. Man-
soori et al. [32] consider a robust multi-objective 
humanitarian relief chain network design for earth-
quake response. Cheng et al. [33] propose a goal 
programming (GP) model for distribution problems 
in humanitarian relief logistics. Mohamadi et al. [34] 
propose a multi-objective mathematical model to de-
sign a humanitarian logistics network under uncer-
tain conditions and employ a robust optimization ap-
proach. Saatchi et al. [35] consider a multi-echelon, 
multi-objective forward and backward relief network 
and propose a hybrid algorithm.  

 Hong and Jeong [13] combine MOP  models with 
the C-DEA method to find the efficient DRF loca-
tion and allocation schemes of humanitarian supplies 
through DRFs in a humanitarian supply chain sys-
tem. They [13] formulate the design problem as two 
MOP models and generate various logistics network 
schemes for applying various weights assigned to 
each objective. Then, the C-DEA method is applied 
to find efficient logistics network schemes, which are 
considered DMUs in the context of DEA. As men-
tioned above, C-DEA can only separate efficient 
DMUs from inefficient DMUs.  Thus, these efficient 
DMUs cannot be ranked by C-DEA, which treats all 
efficient DMUs the same. Later, Hong [36] applies 
CE-DEA methods for designing an emergency relief 
supply chain network model. As mentioned before, 
the CE-DEA methods are developed to rank DMUs 
under evaluation but exhibit their critical weaknesses. 

 There is a gap between finding efficient DMUs 
from the DMUs under evaluation and ranking 
DMUs to be rated. The CE- and SE-DEA methods, 
which have been developed to rank DMUs, exhibit 
their critical weaknesses, as mentioned before. Thus, 
the research question for this study is how to com-
bine these three most popular DEA methods, C-, 
CE-, and SE-DEA methods,  to evaluate and rank 
DRLNS schemes generated by the multi-objective 
programming models. What distinguishes the pres-
ent paper is that the proposed procedure of integrat-
ing the three DEA methods can identify top-rated 
DRLNS alternatives so that decision-makers can 
evaluate these ranked logistics networks better than 
each DEA method. The proposed approach can at-
tract federal and local disaster/emergency response 
officials to develop more flexible and robust supply 
chain plans.                          
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3. Formulation of the DRLNS model

We follow the multi-objective model that Hong 
and Jeong [13] consider.  

Sets:
I: index set of candidate locations for 
 CWHs (i = 1, 2, ω) (1)
N: index set of NBSs n (n =1, 2, …,η) (2)
M: M = {N, I}, index set of NBSs and 
 CWHs (m = 1, 2, ..η, η+1, …, η+ω) (3)
J: index set of candidate locations for 
 RDCs (j =1, 2, η, η+1, …, η+ω) (4)

Parameters:
fi: fixed cost for constructing and operating CWHi (5)
cj: fixed cost for constructing and operating RDCj  (6)

 shipping cost per mile per one unit of demand 
 from CWHi and RDCj (7) 

 shipping cost per mile per one unit of demand 
 from CWHi and NBSm (8)
dij: distance between CWHi and RDCj (9)
djm: distance between RDCj and NBSm (10)
Cmax: maximum number of RDCs can be built (11)

:  capacity of CWHi (12)
:  capacity of RDCj (13)

hm: demand of NBSm (can be either NBS or RDC 
 or CWH) (14)
Wmax: maximum number of CWHs can be built  (15)
ki: minimum number of RDCs that CWHi can 
 handle  (16)
Ki: maximum number of RDCs that CWHi can 
 handle (17)

lj: minimum number of NBSs that RDCj can cover      
  (18)
Lj: maximum number of NBSs that RDCj can cover                                                            
  (19)

Decision variables:
Cj: binary variable deciding whether neighborhood 
 j is selected as RDCj (20)
Wi: binary variable deciding whether a candidate 
 CWHi is selected (21)
xij: binary variable deciding whether RDCj  is 
 covered by CWHi (22)
yjm: binary variable deciding whether location m is 
 covered by RDCj (23)
zijm: binary variable deciding whether location m is 
 covered by CWHi through RDCj (24)

Assumption (see Figure 2):

(i) All NBSs and potential CWH locations are 
the candidates for RDCs to be located.

(ii) A CWH can be located at one of the candi-
date CWH locations only due to some realis-
tic requirements.   

(iii) An RDC must cover any unselected CWH lo-
cations, and for any potential CWH location, 
both RDC and CWH cannot be located.   

(iv) A CWH covers its own demand, and an RDC 
feeds its own demand and demands from its 
covered NBSs.  

(v) When a DRF is disrupted, it cannot satisfy 
any demand to be expected to cover.

Figure 2. Two-echelon disaster relief logistics network system
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The first goal is minimizing the related logistics 
costs, which is the traditional objective of most facility 
location allocation models. Given this problem set, 
the total logistics cost (TLC) is given by 

(25)
where

                                                  (26)

The second goal is to minimize the maximum 
coverage distance (MCD) such that each NBS is cov-
ered by one of the RDCs, and each RDC is covered 
by one of the CWHs within the endogenously deter-
mined distance. This goal minimizes the longest de-
livery distance between CWHs, RDCs, and NBSs.  If 
the MCD is too large, it will cause ineffectiveness to 
the resulting DRLNS. Now, MCD is given by 

         (27)

DRFs should be located at the least likely loca-
tions to be disrupted to enhance disaster supply 
chain resilience. The third goal is to maximize the 
expected amount of demands covered (EDC) by the 
DRFs, which is expressed through several algebraic 
manipulations as

(28)
where
qi - the probability that the CWHi is disrupted (or risk 
probability).
pj - the probability that the RDCj is disrupted (or risk 
probability);

Deckle et al. [37] consider the condition that 
each county resident being close to a DRC should 
be less than a given outset. It implies that each loca-
tion should be within a certain distance of the nearest 
DRCs to be served in case of disaster. It would be 
plausible to claim that the maximum effective cover-
age distance (MECD), denoted by Dc, maybe shorter 
than the MCD. However, it would be desirable to 
maximize the covered demands within Dc, while min-
imizing the MCD. The next goal is to maximize the 

covered demands in case of disaster, CDE, which is 
expressed as 

          

(29)

where an indicator parameter, κjm, is

                                        
(30)

Let the nonnegative deviation variables, 
 and   

represent the amounts by which each TLC, MCD, 
EDC, and CDE value deviates from the target val-
ues. Then, let  
denote relative weights attached to the corresponding 
goal. Now, the objective function is minimizing the 
maximum weighted percentage deviation (WPD), 
subject to each WPD being less than or equal to the 
objected value itself. Then, a MOP model is formu-
lated as follows:

(31)
subject to 

                         (32)

                      (33)

                       (34)

                        (35)

                                                   
(36)

                                                  
(37)

   
                                                 

(38)

 
                                                 

(39)

Now, the complete constraints for the ERSC de-
sign problem are

 
                                                  

(40)



177Hong et al.

International Journal of Industrial Engineering and Management Vol 13 No 3 (2022)

                                  (41)

                           

(42)

                                     

(43)

                       

(44)

                                      

(45)

                                                     

(46)

                           (47)

 
              

(48)

                   
(49)

(50)

  

(51)

Constraints (40) define the upper bound of the 
number of CWHs that can be built. Here at most 
Wmax is allowed. Constraints (41) ensure that the po-
tential CWH location will not be selected simultane-
ously as both CWH and RDC. Constraints (42) en-
sure that if a potential CWH location i is not selected 
(i.e.,Wi=0), its demand must be satisfied by an RDC 
or a CWH. Constraints (43) make certain that each 
NBS (n ∈ N) is assigned to either an RDC or a CWH. 
Constraints (44) limit the minimum and maximum 
number of RDCs to be covered by each CWH. Con-
straints (45) ensure that CWHs only supply the se-
lected RDCs.  Constraints (46) limit the total number 
of selected RDCs to be less than or equal to a user-
specified number, Cmax. Constraints (47) ensure that 
NBSs or unselected CWH locations can only be as-
signed to the selected candidate RDCs.  Constraints 
(48) ensure that the selected candidate RDCj must 
cover a minimum number of lj NBSs and can only 
cover a maximum of Lj NBSs.  Constraints (49) and 
(50) show the shipping capacity of RDCs and CWHs, 

and the amounts, respectively. Constraints (51) show 
the upper and lower limit of a linearized variable, zijm, 
as shown in (26).  

 Theoretically, the weight assigned to each objec-
tive is a continuous variable between 0 and 1. But, for 
computational purposes, there should be a limitation 
on the values of the weights. This study considers dis-
crete values for each weight, where each weight alters 
between 0 and 1 with an increment of 0.1. Solving the 
above model for a given set of weights generates one 
DRLNS scheme with a group of optimal four-per-
formance metrics. There will be multiple schemes 
for various values of the weights. This paper applies 
DEA by considering these generated schemes.   

4. Data envelopment analysis methods

4.1. Classical DEA (C-DEA)

Note that each DMU represents a DRLNS 
scheme generated by solving the MOP model given 
in (31)-(51) for a given value of each weight. Letting 
Ekk represent the DEA score for DMUk, we formu-
late the following mathematical model of C-DEA for 
DMUs with two inputs, TLC and MCD, to produce 
two outputs, EDC and CDE, as follows:

                     (52)

subject to

                               (53)

                                                                             (54)

                                      

N = number of DMUs under evaluation 
i = number of inputs to be used by DMUs
r = number of outputs to be generated by DMUs 
urk = coefficient or weight assigned by DMUk to output r 
vik = coefficient or weight assigned by DMUk to input i

DMUk is said to be efficient only if  The 
model given by (52)-(54) is called an input-oriented 
model, and  is called CRS efficient score (ES).

4.2. Cross efficiency DEA

The cross-efficiency (CE) method consists of 
two phases [38]. The first one is the self-evaluation 
phase, where DEA scores are calculated using the 
model by (52)-(54). In the second phase, the weights/
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multipliers generated in the first phase are applied to 
all DMUs to get the cross-efficiency score (CES) for 
each DMU. Now, the CE for DMUj is given by

                                                                        (55)

DMUj is a rated DMU, whereas DMUk is a rating 
DMU. By averaging Ekj in (55) without the leading 
diagonal, Doyle and Green [10] propose the CES for 
DMUk, which is defined as

                                        
(56)

In (56), 'p' stands for peer evaluation. In the 
meantime, Zhu [38] includes self-evaluation value in 
averaging the appraisals by itself and peers as follows:

                                            
(57)

In (57), 's' stands for self-evaluation. No literature 
explicitly has suggested the appropriate self-evalua-
tion and peer evaluation proportions in deciding the 
CE scores. To solve the dilemma between the above 
two equations, (56) and (57), let β denote the propor-
tion of self-evaluation evaluation. We propose the 
following equation to combine (56) and (57) and call 
it the regular CE-DEA model:

                     

(58)

Wang and Chin [39] develop the neutral CE-
DEA model that determines one set of input and out-
put weights for each DMU without being aggressive 
or benevolent to the others. The model is formulated 
as follows:  

Maximize   w                                                                                                                     (59)

subject to

                               (60)

                            (61)

                      (62)

                                                    (63)

                                   

(64)

4.3. Super efficiency DEA

The super-efficiency score (SES) is obtained from 
the C-DEA model after a DMU under evaluation is 
excluded from the reference set. The SES for DMUk 

is obtained from  

                   (65)

subject to

                                (66)

                   (67)

In the above SE model, efficient DMUs are not 
compared to the same standard since the frontier 
constructed from the remaining DMUs changes for 
each efficient DMU to be rated. Jeong and Ok [40] 
and Yu and Hou [41] maintain that the self-evalu-
ation efficiency would not discriminate between ef-
ficient DMUs and propose a modified cross-evalua-
tion method using the SES. Now, the cross efficiency 
of DMUj based on SES, which is called super-cross 
efficiency (SCE) in this paper, is given by

                                    

(68)

Then, the cross-evaluation matrix consists of the 
self-evaluation value, SEkk in (65), in the leading di-
agonal and peer evaluation value, SCEkj in (68), in 
the non-diagonals, as shown in Table 1. As shown 
in (58), the following equation for the average SCE 
score for DMUκ is proposed:

          

(69)

Table 1. Super efficiency-based cross-evaluation matrix

Rated DMUj

Rating DMUk

1 2 … N

1 SE11 SE12 … SE1N

2 SCE21 SCE22 … SCE2N

… … … … …

N SCEN1 SCEN2 … SCENN

Average SCE1 SCE2 … SCEN
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Now, this study extends the SE-DEA model to 
the neutral CE-based method. The neutral CE for-
mation based on the SE-DEA can be formulated as 
shown in (59)-(64) with k ≠ j in (62).  

5. Case study and observations

The case study applies major disaster declara-
tion records in South Carolina (SC) to illustrate the 
proposed procedure. Forty-six counties are clustered 
based on proximity and populations into twenty coun-
ties. Then, we choose one city from each clustered 
county based on a centroid approach, assuming that 
all population within the grouped county exists in that 
city. The distance between counties is assumed to be 
the distance between these cities. The Federal Disas-
ter Management Agency (FEMA) database (FEMA, 
2015) provides a list of counties where a major di-
saster was declared. It is assumed that when a major 
disaster is declared, the disaster facility in that county 
is damaged and shut down. Based on the historical 
record and the assumption, each neighborhood's risk 

probability is calculated in Table 2. The potential five 
locations for CWHs, listed as the last five locations, 
are selected based upon population, the proportion 
of area that each site would potentially cover, and the 
proximity to Interstate Highways in SC.  The num-
bers of RDCs and CWHs to be built are pre-specified 
in most cases. We simplify the TLC function given 
by Eq. (25) by excluding the fixed cost terms for 
RDCs and CWHs. Also, the following parameters are 
pre-determined for our case study. The maximum 
numbers of RDCs and CWHs are set to 5 and 2, re-
spectively. The minimum and maximum RDCs that 
a CWH must handle are set to 1 and 10, respectively. 
Each RDC must cover at least 2  and at most 
7 (Lj  = 7) NBSs. The capacities of RDCs and CWHs 
are set to 1,500 K and 2,500 K. We hypothetically set 
the maximum effective coverage distance in case of 
disaster, Dc in (30), equal to 35 miles to find CDEmax.  

 The MOP model is formulated and solved for 
various values of the weight set, α. Each weight alters 
between 0 and 1 with an increment of 0.1. There are 
286 configurations   arising out of the combinations 
of the setting of α under the condition  

Table 2. Data for locations of DRFs

No City County Population (K) Risk Probability

1 Anderson Anderson/Oconee/Pickens 373 0.125

2 Beaufort Beaufort/Jasper 187 0.063

3 Bennettsville Marlboro/Darlington/Chesterfield 96 0.375

4 Conway Horry 269 0.375

5 Georgetown Georgetown/Williamsburg 93 0.438

6 Greenwood Greenwood/Abbeville 92 0.125

7 Hampton Hampton/Allendale 33 0.188

8 Lexington Lexington/Newberry/Saluda 318 0.313

9 McCormick McCormick/Edgefield 35 0.250

10 Moncks Corner Berkeley 178 0.313

11 Orangeburg Orangeburg/Bamberg/Calhoun 123 0.375

12 Rock Hill York/Chester/Lancaster 321 0.313

13 Spartanburg Spartanburg/Cherokee/Union 367 0.313

14 Sumter Sumter/Clarendon/Lee 157 0.375

15 Walterboro Colleton/Dorchester 135 0.250

16 Aiken† Aiken/Barnwell 184 0.313

17 Charleston† Charleston 350 0.250

18 Columbia† Richland/Fairfield/Kershaw 461 0.375

19 Florence† Florence/Dillon/Marion 203 0.438

20 Greenville† Greenville/Laurens 521 0.125

†potential locations for CWH
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After 286 runs, we reduce these configurations into 
148 consolidated schemes after grouping them with 
the same values of four-performance metrics. Each 
of the 148 network schemes is considered a DMU, 
representing the optimal locations of DRFs and their 
supply chain schemes. Considering TLC and MCD 
as inputs and EDC and CDE as outputs, we first 
apply the C-DEA model in (52)-(54). The thirteen 
(13) efficient DMUs out of 148 with a perfect ES are 
called "a best-practice frontier."  

In Table 3, we present all 13 efficient DMUs, 
each performance metric's value, ES for C-DEA, and 
cross-efficiency scores (CESs) for Regular and Neu-
tral models. Similarly, super-cross efficiency scores 
(SCESs) for Regular and Neutral models for these ef-
ficient DMUs are also reported. The DMUs with the 
top three greatest CESs/SCESs are denoted by '***', 
'**', and '*,' respectively. From Table 3, we observe 
that the Regular CES finds DMU #57 as the most ef-
ficient DMU, whereas the Neutral CES ranks DMU 
#53 as #1. In contrast, DMU #58 is ranked #1, DMU 
#57 is ranked second, and DMU #53 is ranked third 
by both SCESs. Note that DMU #57 and DMU 
#58 yield almost identical inputs and outputs, while 
DMU #57 yields slightly less TLC and EDC than 
DMU #58. DMU #53 results in fewer inputs, TCL 
and MCD, and fewer outputs, EDC and CDE, than 
DMU #57 or DMU #58. In other words, DMU #53 

is more efficient in terms of inputs but less efficient in 
terms of outputs than DMU #57 or DMU #58. From 
Table 4 showing the effect of self-evaluation propor-
tion, β, we observe that the increase in self-evaluation 
does not affect the top three DMUs ranked by both 
CE DEA methods. On the contrary, the effect of β 
seems to be significant for both SE-DEA models. As 
β increases, DMU #53, ranked as the top DMU by 
the CE neutral model, emerges as the top DMU, and 
DMUs #59, #60, and #142, which are not ranked as 
the top three by any methods, begin to be ranked by 
the SE DEA models. Based on these results from 
Tables 3 and 4, we depict the four highly-ranked 
DMUs, DMUs #53, #57, #58, and #142, in Figures 
3-1 and 3-2.

As shown in Figures 3-1 and 3-2, two sites, 
{Greenville, Columbia}, are selected as the CWH 
locations by DMU #53.  Three RDC sites, {Ander-
son, Greenwood, Spartanburg}, are covered by the 
CWH{Greenville}, while the CWH {Columbia} cov-
ers RDCs {Orangeburg, Sumter}. The RDCs {Ander-
son, Greenwood, Spartanburg} cover the NBSs {Mc-
Cormick, Aiken, Lexington}, respectively, whereas 
the RDC {Orangeburg} covers {Hampton, Beau-
fort, Walterboro, Charleston, Monks Corner} and 
the RDC {Sumter} covers {Bennettsville, Conway, 
Georgetown, Florence}. In contrast, in DMU #57, 
two sites, {Greenville, Charleston}, are selected as the 

Table 3. Efficient DMUs, their performance metrics, and efficient scores

No DMU #
TLC($) MCD 

(miles)
EDC
(K)

CDE
(K) ES CES

(R)
CES
(N)

SES
(R)

SES
(N)

Input Input Output Output

1 25 397,904 100.9 2119 3361 1.0000 0.8566 0.8812 0.8494 0.8501

2 26 338,510 85.5 2754 2139 1.0000 0.8406 0.8840 0.8611 0.8613

3 53 294,084 83.9 2637 2094 1.0000 0.8837* 0.9157*** 0.8989* 0.8991*

4 56 329,360 130.0 2411 3040 1.0000 0.8205 0.8041 0.8075 0.8077

5 57 300,062 116.0 2862 2736 1.0000 0.9079*** 0.9001* 0.9023** 0.9023**

6 58 300,608 116.0 2868 2736 1.0000 0.9078** 0.9002** 0.9024*** 0.9024***

7 59 308,864 116.0 2996 2049 1.0000 0.7782 0.7830 0.7837 0.7834

8 60 335,001 93.9 3031 2057 1.0000 0.8283 0.8645 0.8493 0.8493

9 62 293,234 176.0 2600 2725 1.0000 0.7417 0.6909 0.7165 0.7161

10 78 425,988 100.9 2094 3361 1.0000 0.8248 0.8548 0.8189 0.8197

11 79 434,507 100.9 2090 3361 1.0000 0.8163 0.8478 0.8108 0.8116

12 95 363,088 94.0 3075 2038 1.0000 0.7964 0.8394 0.8209 0.8210

13 142 388,104 100.9 2115 3361 1.0000 0.8670 0.8893 0.8591 0.8599

ES: Efficiency Score, CES: Cross-Efficiency Score, SES: Super-Efficiency Score, R: Regular Model, N: Neutral Model 
***: Ranked First, **: Ranked Second, *: Ranked Third
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CWH locations. Contrary to DMU #53's CWH {Co-
lumbia}, DMU #57's CWH {Charleston} covers two 
RDCs {Walterboro, Moncks Corner}, which cover 
most of the NBSs located in the Walterboro area. 
We see that DMU #58 selects the same CWH and 

RDCs locations as DMU #57. The only difference 
between DMU #57 and #58 is caused by the RDC 
covering the NBS {Orangeburg}. In DMU #57, the 
RDC {Moncks Corner} covers {Orangeburg}, where-
as the RDC {Walterboro} covers it in DMU #58. 

Table 4. The effect of self-evaluation proportion on the cross-efficiency score and super efficiency score

DMU #

β Model 25 26 53 56 57 58 59 60 62 78 79 95 142

1
C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SE 1.0006 1.0195 1.0411*** 1.0115 1.0017 1.0006 1.0219** 1.0197 1.0147 1.0000 1.0000 1.0134 1.0210*

0.8

CE-R
0.9689 0.9655 0.9748* 0.9611 0.9800*** 0.9800** 0.9519 0.9628 0.9440 0.9620 0.9602 0.9559 0.9712

CE-N
0.9743 0.9749 0.9818*** 0.9576 0.9783* 0.9784** 0.9530 0.9707 0.9330 0.9686 0.9670 0.9652 0.9760

SE-R
0.9678 0.9852 1.0103*** 0.9673 0.9801 0.9793 0.9703 0.9828* 0.9501 0.9608 0.9590 0.9717 0.9859**

SE-N
0.9680 0.9852 1.0103*** 0.9674 0.9801 0.9793 0.9702 0.9828* 0.9500 0.9609 0.9592 0.9717 0.9861**

0.5

CE-R
0.9223 0.9137 0.9370* 0.9028 0.9501*** 0.9500** 0.8798 0.9070 0.8601 0.9051 0.9005 0.8897 0.9280

CE-N
0.9357 0.9372 0.9544*** 0.8939 0.9459* 0.9460** 0.8825 0.9266 0.8326 0.9214 0.9176 0.9130 0.9401

SE-R
0.9187 0.9337 0.9641*** 0.9010 0.9479** 0.9474* 0.8928 0.9274 0.8532 0.9019 0.8975 0.9091 0.9333

SE-N
0.9191 0.9338 0.9642*** 0.9011 0.9479** 0.9474* 0.8927 0.9274 0.8529 0.9023 0.8979 0.9092 0.9337

0.3

CE-R
0.8912 0.8791 0.9118* 0.8639 0.9302*** 0.9301** 0.8318 0.8698 0.8041 0.8672 0.8607 0.8456 0.8992

CE-N
0.9099 0.9121 0.9361*** 0.8515 0.9242* 0.9244** 0.8355 0.8973 0.7656 0.8900 0.8846 0.8783 0.9161

SE-R
0.8859 0.8994 0.9333*** 0.8568 0.9263** 0.9261* 0.8412 0.8905 0.7885 0.8627 0.8565 0.8674 0.8982

SE-N
0.8865 0.8996 0.9334*** 0.8570 0.9263** 0.9261* 0.8410 0.8905 0.7882 0.8633 0.8571 0.8675 0.8988

0.0

CE-R
0.8446 0.8273 0.8740* 0.8056 0.9002*** 0.9001** 0.7597 0.8140 0.7202 0.8102 0.8010 0.7794 0.8559

CE-N
0.8714 0.8744 0.9088*** 0.7878 0.8918* 0.8919** 0.7650 0.8533 0.6652 0.8428 0.8352 0.8261 0.8802

SE-R
0.8368 0.8479 0.8871* 0.7905 0.8941** 0.8942*** 0.7638 0.8351 0.6916 0.8038 0.7950 0.8049 0.8456

SE-N
0.8376 0.8482 0.8873* 0.7907 0.8941** 0.8942*** 0.7635 0.8351 0.6912 0.8047 0.7959 0.8050 0.8464

C: Classical DEA, CE: Cross-Efficiency DEA, SE: Super-Efficiency DEA, R: Regular Model, N: Neutral Model , 
***: Ranked First, **: Ranked Second, *: Ranked Third

Figure 3-1. Most efficient disaster relief logistics network schemes
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DMU #142 locates two CWH sites in SC's middle 
area, {Columbia, Florence}. Contrary to the alloca-
tion of CWH {Columbia} covering the eastern and 
southeastern areas of SC, the CWH {Columbia} in 
DMU #142 covers the western and northwestern ar-
eas of SC.  

From the above analysis, there are some inter-
esting managerial implications for decision-makers. 
Each of these top-four configurations has its advan-
tages and disadvantages that the decision-makers 
would like to consider before making the final deci-
sion. DMU #142 has the highest CDE as its advan-
tage, but the highest TLC and the lowest EDC can 
be considered a disadvantage. DMUs #57 and #58, 
ranked as #1 more than the other two DMUs, have 
similar configuration and performance measures. 
With the top priority of the total cost and coverage 
distance, DMU #53 has an advantage over the other 
top DMUs. However, the disadvantage comes from 
the lowest expected demand covered (EDC) and cov-
ered demand in case of disaster (CDE).  

We observe that DMU #53 shows CWH {Green-
wood}, rather than CWH {Columbia}, covers NBS 
{Lexington} through RDC {Greenwood}.  The dis-
tance between {Greenwood} and {Lexington} is 61 
miles, whereas the distance between RDC {Orange-
burg} and {Lexington} is only 45 miles and between 
{Columbia} and {Lexington} is only 15 miles. The 
main reason that {Columbia} or {Orangeburg} does 
not cover {Lexington} is that the limited storage ca-
pacity of {Columbia} and relatively high disruption 
probabilities for {Columbia} and {Orangeburg}.  If 
the current capacity of {Columbia} is increased by 

103K, it could cover the demand of {Lexington} via 
RDC {Orangeburg}, which is called Scenario 1, or di-
rectly, Scenario 2. Now, Table 5 displays each perfor-
mance metric's value for each scenario and the origi-
nal scheme. We observe no difference in rankings 
between Scenario 1 and the original scheme, but the 
modified DMU #53 with Scenario 2, depicted in Fig-
ure 4, ranks #1 regardless of the evaluation models. 
Thus, if there are no particular guidelines, DMUs 
#57 and #58 would be candidates for the decision-
makers to select as the final ones. As for Scenario 2, 
the decision-makers could select DMU #53 to imple-
ment as the most efficient DRLNS configuration with 
some flexibility.    

Figure 3-2. Most efficient disaster relief logistics network schemes

Figure 4. Modified disaster relief logistics network scheme 
(DMU #53)
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6. Summary and conclusions

The design of the disaster relief supply chain sys-
tem (DRLNS) has become an important strategic 
decision due to the significant damage inflicted by re-
cent natural or human-made disaster events, includ-
ing the Covid-19 pandemic. This study deals with 
designing efficient and resilient DRLNS so that DRFs 
can deliver relief items to more affected sites at the 
right time with the right amount of items. For plan-
ning more balanced DRLNS configurations, multi-
objective programming (MOP) is applied to generate 
various network alternatives. Three data envelop-
ment analysis (DEA) methods are used to evaluate 
these alternatives and identify the most efficient one, 
considering each network scheme as a decision-mak-
ing unit (DMU).  

 The classical DEA (C-DEA) estimates DMUs 
regarding self-evaluation only, allowing each DMU 
to rate its efficiency score with the most favorable 
weights. Consequently, problems related to weak 
discriminating power have arisen because multiple 
DMUs frequently become efficient. The cross-ef-
ficiency (CE) evaluation was introduced to increase 
the discrimination power. The two models, Regular 
and Neutral, were introduced a long time ago to com-
pensate for the critical weaknesses of CE-DEA. But 
only a few references have applied these methods to 
show the increased discriminating power. Also, no 
literature explicitly has suggested the appropriate 
proportions of self-evaluation and peer evaluation in 
deciding the CE scores. The super-efficiency DEA 
(SE-DEA) method was developed to enhance the 
discrimination power. This paper might be the first 
attempt to combine C-, CE-, into SE-DEA methods 
for designing DRLNS, using the two models, Regu-
lar and Neutral, integrated into this cross-evaluation 
method based on the super efficiency scores. This 
paper also considers the effects of self-evaluation pro-
portion on the various ESs generated by each DEA 
method.  

 Using the actual data available for South Caro-
lina, this paper demonstrates the proposed methods 
to evaluate various DRLNS configurations generat-
ed by the MOP model. Surprisingly, the proposed 
methods reveal some hidden efficient network con-
figurations that the regular CE model alone can't 
identify. We observe that the proposed approach 
can be an essential tool for designing DRLNS and 
other supply chain network systems with multiple 
inputs and multiple outputs. In addition, if some 
flexibility is added to the efficient network configu-
rations designed by the proposed method, the per-
formance of such networks could be enhanced.  

 The limitation of this study comes from the as-
sumption that if a DRF, either CWH or RDC, is 
disrupted and shut down, the sites, either NBSs or 
RDCs, allocated to this DRF won't be covered. For 
example, if a CWH is disrupted, all RDCs assigned 
to this CWH and subsequent NBSs won't be cov-
ered. Future research will enhance this study if the 
concept of backup operation in the case of facility 
shutdown is considered. Another limitation of this 
study assumes that only facilities are subject to dis-
ruptions, but disruption can block the flow of re-
lief items due to the trouble of the routes. Thus, it 
would significantly enhance this study if an emer-
gency backup routing plan is considered for future 
research.
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Table 5. Performance metrics and efficient scores for DMU #53

Scenario TLC($) MCD 
(miles)

EDC
(K)

CDE
(K) ES CES

(R)
CES
(N)

SES
(R)

SES
(N)

Input Input Output Output

Original 294,084 83.9 2637 2094 1.0000 0.8837* 0.9157*** 0.8989* 0.8991*

1 285,749 83.9 2517 2094 1.0000 0.8697* 0.9150*** 0.8958* 0.8958*

2 263,371 83.9 2592 2412 1.0000 0.9634*** 0.9789*** 0.9874*** 0.9874***

Scenario 1: CWH {Columbia} -> RDC (Orangeburg)-> NBS {Lexington}, Scenario 2: CWH {Columbia} -> NBS {Lexington}
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